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1. Introduction 

Consider a chain hanging freely from two fixed points in the presence of gravity. The 

shape taking place is known as a catenary and can be found in a variety of places 

including spider webs and telephone lines. In this essay, I have analysed and modelled 

the catenary as a graph using my own method, which, after searching literature, seems 

not to have been published earlier. The seemingly easy problem is both complicated 

and fascinating as it serves as another area in mathematics where Euler´s number 

mysteriously appears.  

 

Finding the function of the catenary is regarded as a classical problem in the field of 

calculus. The catenary was mistakenly believed to be parabolic by Galileo Galilei and 

was not solved until 1691 by Jakob Bernoulli who used differential calculus1. The 

traditional solutions depend on a second order differential equation stemming from a 

mathematical description of the curve, but in this essay, I have taken a reductionist 

approach by simplifying the catenary into its fundamental form: a simplified model 

which I have coined “simplified catenary”.  

 

The branches of math employed in my method are mainly trigonometry, function 

composition and calculus which build upon the description of how the gravity and 

tension force defines the catenary’s shape. The bedrock of my method is to simplify the 

catenary into an idealized string with points of mass uniformly distributed alongside it. 

This simplification allows the use of drawing free body diagrams which illustrate the 

forces acting on each point. This gives light to a crucial trigonometric equation which 

                                                        
1 E. H. Lockwood. “A book of curves”. London: Cambridge University Press, 1961 
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I have presumptuously named after myself. With this equation, one can employ 

function composition to derive the Cartesian equation of the catenary. 

2. Simplified catenaries 

The starting point of my solution is to simplify the catenary as masses attached to a 

string spaced equally from each other. The figure below represents an inelastic, flexible, 

infinitely thin and weightless string held up by two fixed points with 5 points of mass 

(in black) attached to it. 

 

 

Figure 1: Third level catenary 

The distances between each neighbouring mass along the string are identical and each 

segment is given an angle to the horizontal named 𝜃1, 𝜃2 and 𝜃3. In this essay, several 
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simplified catenaries will be presented with a varying number of masses. All of them 

consist of one mass on the bottom and a varying number of pairs of masses above. To 

classify the catenary, I will look at the number of “floors” it consists of. The catenary 

illustrated above has 3 floors and we therefore classify it as a third level catenary. The 

first floor always consists of one mass. 

 

As illustrated, the distance between the two fixed points supporting the masses will be 

referred to as 𝐷, and the length of each segment will be referred to as 𝐿. 

 

By using common sense, we can make some assumptions of the simplified catenary, 

which are helpful in the mathematical analysis of its shape. As we can imagine, the 

catenary will be symmetrical as all the joints are equivalent in mass and equally 

distanced. More importantly, we can reason that each point of mass must be in 

mechanical equilibrium, meaning that the net force on each mass is zero. 

 

2.1 First level catenary 

The first level catenary is the simplest version as it only consists of one mass attached 

to the string. Its triangular shape may not closely resemble the curve but drawing a free 

body diagram of the point is the first step towards a powerful insight in the physics that 

governs the shape of a catenary.  

 



5 
 

 

Figure 2: First level catenary 

As mentioned, all the points of mass in the catenary are in equilibrium, meaning that 

the sum of all the forces acting on the points are equal to zero. Figure 3 is a free body 

diagram of the forces exerted on the mass. 

 

 

Figure 3: Free body diagram of the first level catenary 
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The mass is supported equally by the two segments resulting in tension. The sum of the 

vertical components of the tension equals the force 𝑚𝑔.  

 

By decomposing 𝑇1 into its horizontal and vertical vectors, we obtain the following 

construction: 

 

Figure 4: Decomposed vector forces of the first level catenary 

As the mass is in equilibrium, the vertical vectors 𝑚𝑔 and 2 ∙ 𝑇1 ∙ sin 𝜃1 must be equal 

in magnitude. In other words, the horizontal vector component of 𝑇1 equals 
𝑚𝑔

2
: 

2 ∙ 𝑇1 ∙ sin 𝜃1 = 𝑚𝑔 

∴ 𝑇1 ∙ sin 𝜃1 =
𝑚𝑔

2
 

We define 𝑇1 in terms of 𝑚𝑔 and sin 𝜃1: 

𝑇1 =
𝑚𝑔

2 ∙ sin 𝜃1
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One can make intuitive sense out of this expression: anybody who has held a heavy 

chain and stretched with both hands can imagine feeling the resisting force building as 

one pulls the ends further apart. In the same fashion, a decrease of sin 𝜃1 results in the 

tension growing fast. We will come back to this definition of 𝑇1 later when analysing 

catenaries of higher levels. 

 

Now that 𝑇1 is defined in greater detail, we can express the horizontal component  

𝑇1 ∙ cos 𝜃1 as follows: 

𝑇1 ∙ cos 𝜃1 =
𝑚𝑔

2 ∙ sin 𝜃1
∙ cos 𝜃1 

∴ 𝑇1 ∙ cos 𝜃1 =
1

2
∙ 𝑚𝑔 ∙ cot 𝜃1 

Now that we have defined the horizontal forces in greater detail, it is instructive to draw 

a new free body diagram. 

 

Figure 5: Decomposed vector forces of the first level catenary 
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2.2 Second Level Catenary 

The second level catenary consists of two floors, making matters more complicated. 

Finding 𝜃1 and 𝜃2 in the second level catenary seems to be significantly harder because 

the shape can take many different forms.  

 

Figure 6: Second level catenary 

By investigating the forces acting upon the new points however, we find that the force 

of gravity only allows for one possible shape of the catenary. We start by making a free 

body diagram of the upper right point in the second floor: 
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Figure 7: Free body diagram of the upper right point of a second level catenary 

In Figure 7, 𝑇2 represents the tension in the string of the second floor as a result of the 

three masses being pushed downwards by gravity. 𝑇1, is the tension in the string of the 

first floor as a result of the bottom mass being pulled down by gravity as well. The force 

vector 𝑚𝑔 is simply the gravity acting on the mass in the second floor. The vectors in 

the free body diagram above are not drawn to scale, although they do cancel each other 

out. 
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By decomposing 𝑇2 we get the following construction:  

 

Figure 8: Decomposed vector forces of the upper right point 

To express 𝑇2 in greater detail we simply equate the vertical vector component 

𝑇2 ∙ sin 𝜃2 with 𝑚𝑔 and the vertical component of 𝑇1, 𝑇1 ∙ sin 𝜃1: 

𝑇2 ∙ sin 𝜃2 =  𝑚𝑔 + 𝑇1 ∙ sin 𝜃1 

As shown in the previous section, the vertical component of 𝑇1 is equal to 
𝑚𝑔

2
:  

𝑇1 ∙ sin 𝜃1 =
𝑚𝑔

2
 

Thus, we can express the vertical component of 𝑇2 in terms of 𝑚𝑔: 
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𝑇2 ∙ sin 𝜃2 =  𝑚𝑔 +
𝑚𝑔

2
 

∴ 𝑇2 =  
3 ∙ 𝑚𝑔

2 ∙ sin 𝜃2
 

Now that 𝑇2 is more specifically defined, we can redefine the horizontal component, 

𝑇2 ∙ cos 𝜃2, as follows: 

𝑇2 ∙ cos 𝜃2 =
3 ∙ 𝑚𝑔

2 ∙ sin 𝜃2
∙ cos 𝜃2 

∴ 𝑇2 ∙ cos 𝜃2 =
3 ∙ 𝑚𝑔

2
∙ cot 𝜃2 

We redefine the vertical component, 𝑇2 ∙ sin 𝜃2, as well: 

𝑇2 ∙ sin 𝜃2 =
3 ∙ 𝑚𝑔

2 ∙ sin 𝜃2
∙ sin 𝜃2 

∴ 𝑇2 ∙ sin 𝜃2 =
3 ∙ 𝑚𝑔

2
 

Now that the forces based on 𝑇1 and 𝑇2 have been defined more specifically we can 

draw a new free body diagram of the two points of a second level catenary: 
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Figure 9: A free body diagram of two masses of the second level catenary 

The illustration above is a free body diagram of the catenary as one body with two 

centres of mass. The forces constituting the horizontal component of the tension, 𝑇1, 

are represented as 
1

2
∙ 𝑚𝑔 ∙ cot 𝜃1 and 

3

2
∙ 𝑚𝑔 ∙ cot 𝜃2.  

 

We know the masses in a simplified catenary must be in perfect equilibrium. This fact 

is evidently consistent with regards to the vertical vector components: 

1

2
𝑚𝑔 +

3

2
𝑚𝑔 = 𝑚𝑔 + 𝑚𝑔 ⟹ 2𝑚𝑔 = 2𝑚𝑔 

But the two horizontal components do not share the same obviosity. It is instructive to 

equate them: 

𝑚𝑔 ∙ cot 𝜃1

2
=

3 ∙ 𝑚𝑔 ∙ cot 𝜃2

2
 

∴ cot 𝜃1 = 3 ∙ cot 𝜃2 
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∴ tan 𝜃2 = 3 ∙ tan 𝜃1 

The essence of this equation is surprising: it states that the slope of the second angle is 

three times greater than the slope of the first angle. This pleasing result elegantly 

dictates the value of tan 𝜃2 based on a given value for tan 𝜃1. We can find 𝜃2 in terms 

of 𝜃1 as follows: 

𝜃2 = arctan(3 ∙ tan 𝜃1) 

 

2.3 Expressing angles in terms of width and length 

This newly derived equation reveals the crucial relationship between 𝜃1 and 𝜃2 of the 

second level catenary: 

tan 𝜃2 = 3 ∙ tan 𝜃1 

But it would be helpful to deduce the two angles given a value for the segment length, 

𝐿, and the width of the catenary, 𝐷.  

 

 

Figure 30: Second level catenary 
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With simple trigonometry we can express the width of the catenary as follows: 

𝐷 = 2 ∙ (𝐿 ∙ cos 𝜃1 + 𝐿 ∙ cos 𝜃2) 

∴
𝐷

2𝐿
= cos 𝜃1 + cos 𝜃2 

By applying the discovery of the relation between 𝜃1  and 𝜃2 , we can obtain the 

following expression: 

[𝜃2 = arctan(3 ∙ tan 𝜃1)] 

∴
𝐷

2𝐿
= cos 𝜃1 + cos(arctan(3 ∙ 𝑡𝑎𝑛 𝜃1)) 

It is seemingly too difficult to solve the equation for 𝜃1 for given values of 𝐷 and 𝐿 

using classical algebra. Alternatively, one can solve it graphically, but this will not be 

covered in this essay. 

 

3. Victor’s Law 

Victor’s Law asserts that the slope of adjacent segments of a simplified catenary 

increases arithmetically. This section deals with proving this proposition. 

 

The equation below was derived from equating the horizontal vector forces of two 

adjacent points of a second level catenary in section 2.2. 

𝑇2 ∙ cos 𝜃2 = 𝑇1 ∙ cos 𝜃1 

∴ tan 𝜃2 = 3 ∙ tan 𝜃1 

It turns the seemingly difficult problem of finding one angle based on the other into a 

primitive task, but this relationship does not restrict itself to second level catenaries. 

Since all the points in a simplified catenary are in equilibrium, the horizontal vector 

forces of each mass must be equal to cancel each other out. In other words, we should 



15 
 

be able to equate the horizontal vector component of any two masses in a catenary. As 

the formula for the horizontal component with respect to the floor, 𝑛, is 𝑇𝑛 ∙ cos 𝜃𝑛, we 

can obtain the following expression where 𝑘 is another floor in the same catenary: 

𝑇𝑛 ∙ cos 𝜃𝑛 = 𝑇𝑘 ∙ cos 𝜃𝑘 

This is the first step towards deriving Victor’s Law. By simplifying this expression, we 

can easily find the angle of any floor given a known value of the first angle.  

 

Here are the equations for tension in the segment of each floor of the second level 

catenary which were derived in section 2.1 and 2.2: 

𝑇1 =
𝑚𝑔

2 ∙ sin 𝜃1
 

𝑇2 =
3 ∙ 𝑚𝑔

2 ∙ sin 𝜃2
 

With inductive reasoning, we observe that the tension of a segment with respect to the 

floor equals to half of the sum of the masses it supports multiplied by 𝑔 and divided by 

sin 𝜃𝑛 
, where 𝜃𝑛 

is the angle of the string to the normal: 

𝑇𝑛 =
∑ 𝑚𝑔

2 ∙ sin 𝜃𝑛
 

The sum of the masses in a simplified catenary with respect to its level, 𝑛, can be 

expressed as an arithmetic sequence with a common difference of 2 ∙ 𝑚𝑔 and first term 

of 𝑚𝑔. This should be intuitive as the first level catenary has one mass, and the second 

level catenary has one, plus two more. The third level catenary has one, plus two, plus 

two. Hence: 

∑ 𝑚𝑔 = 𝑚𝑔 + (𝑛 − 1) ∙ 2𝑚𝑔 

∴ ∑ 𝑚𝑔 = (2𝑛 − 1) ∙ 𝑚𝑔 

𝑇𝑛 can therefore be written like this: 
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𝑇𝑛 =
(2𝑛 − 1) ∙ 𝑚𝑔

2 ∙ sin 𝜃𝑛
 

Thus, we can finally express the horizontal component, 𝑇𝑛 ∙ cos 𝜃𝑛 , as follows: 

𝑇𝑛 ∙ cos 𝜃𝑛 =
(2𝑛 − 1) ∙ 𝑚𝑔

2 ∙ sin 𝜃𝑛
∙ cos 𝜃𝑛 

∴ 𝑇𝑛 ∙ cos 𝜃𝑛 =
(2𝑛 − 1) ∙ 𝑚𝑔 ∙ cot 𝜃𝑛

2
 

Now we can continue simplifying the equation, 𝑇𝑛 ∙ cos 𝜃𝑛 = 𝑇𝑘 ∙ cos 𝜃𝑘: 

(2𝑛 − 1) ∙ 𝑚𝑔 ∙ cot 𝜃𝑛

2
=

(2𝑘 − 1) ∙ 𝑚𝑔 ∙ cot 𝜃𝑘

2
 

∴ (2𝑛 − 1) ∙ cot 𝜃𝑛 = (2𝑘 − 1) ∙ cot 𝜃𝑘 

By algebraically manipulating this expression further we can express the tangent of any 

angle in terms of its floor and tan 𝜃1: 

∴ (2𝑛 − 1) ∙ cot 𝜃𝑛 = (2 ∙ (1) − 1) ∙ cot 𝜃1 

∴ (2𝑛 − 1) ∙ cot 𝜃𝑛 = cot 𝜃1 

∴ tan 𝜃𝑛 = (2𝑛 − 1) ∙ tan 𝜃1 

∴ tan 𝜃𝑛 = tan 𝜃1 + 2 ∙ tan 𝜃1 ∙ (𝑛 − 1) 

As the equation reveals, the slopes of neighbouring segments increase arithmetically, 

where the first term is tan 𝜃1 and the common difference is 2 ∙ tan 𝜃1. This is Victor’s 

Law and exposes the catenary as simplistic in nature. 

 

In the following example, we will find the value of 𝜃4 given that 𝜃1 is 30° using the 

newly derived formula: 

tan 𝜃𝑛 = (2𝑛 − 1) ∙ tan 𝜃1 

[𝑛 = 4 𝑎𝑛𝑑 𝜃1 = 30°] 

∴ tan 𝜃4 = (2 ∙ (4) − 1) ∙ tan 30° 

∴ tan 𝜃4 = 7 ∙ tan 30° 



17 
 

∴ 𝜃4 = arctan (7 ∙ tan 30°) 

∴ 𝜃4 ≈ 76.1°  

 

3.1 Constructing simplified catenaries with Victor’s Law 

tan 𝜃𝑛 = (2𝑛 − 1) ∙ tan 𝜃1 

As we can see, the tangents of the consecutive angles in a catenary increase 

arithmetically with a common difference of 2 ∙ tan 𝜃1. This makes it easy to calculate 

the angles of a simplified catenary and construct them. In the illustration below a fourth 

level catenary has been constructed using Victor’s Law, where the tangent of the 

consecutive angles increases with a common difference of 2 ∙ tan 30°. 

 

Figure 41: Fourth level catenary 

The resemblance of a real catenary is clear. 
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4. The equation of the catenary 

Victor´s Law makes it easy to construct simplified catenaries, but a fourth level 

catenary is still distant from a real one. This section is concerned with modelling the 

simplified catenary as a graph. One can imagine a real-life catenary as a chain of 

billions of atoms bonded together. Analogously to the simplified catenary, the width of 

each atom, 𝐿, is tiny and the slope of the line drawn between the bottom and adjacent 

atom is virtually zero.  

 

The method I have come up with relies on the use of function composition and 

integration.  

 

4.1 Composite method 

The bedrock of this method is to express the width and height of a simplified catenary 

as functions with respect to the floor, 𝑛, followed by the composition of a new function 

based on the two. The function of the catenary, 𝑓(𝑥), can be expressed as follows 

𝑓(𝑥) = 𝐻 ∘ 𝑊−1(𝑥) 

, where 𝐻 is a function of the height and 𝑊−1 is the inverse of the function of width. 

The following subsection is concerned with providing the mathematical justification 

for why this composite function yields the catenary.  
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4.2 Proof of Composition  

 

Figure 52: A simplified catenary as a function 

The illustration above displays the right side of a simplified catenary. The position of 

the blue nodes represents the edges of the catenary of a given floor, 𝑛. The node, 𝑛1, 

for example is the edge of the first level catenary. 𝐻(1) and 𝑊(1) give us the height 

and half of the width of the first level catenary.  Similarly, 𝐻(2) and 𝑊(2) give us the 

height and half of the width of the second level catenary. The functions 𝐻(𝑛) and 𝑊(𝑛) 

give us the height and half of the width of simplified catenaries with respect to the floor, 

𝑛.  

 

 

x 

y 
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The graph of the catenary, 𝑓, must map the variable 𝑊(𝑛) from its domain to 𝐻(𝑛) in 

its range. In other words, the input of our function, 𝑊(𝑛), yields 𝐻(𝑛) as the output. In 

summary, we can conclude the following operation of our function, 𝑓: 

𝑊(𝑛)
𝑓
→ 𝐻(𝑛) 

∴ 𝑓 ∘ 𝑊(𝑛) = 𝐻(𝑛) 

The process of the function, 𝑓, is illustrated on this diagram: 

 

Figure 63: Diagram of the function, f 

The inverse of  𝑊 reverses 𝑊, yielding the domain, 𝑛, which is applied to 𝐻, resulting 

in 𝐻(𝑛). Hence, 𝑓 must be 𝐻 ∘ 𝑊−1. We test the proposition: 

𝑓 ∘ 𝑊(𝑛) = 𝐻(𝑛) 

[𝑓 = 𝐻 ∘ 𝑊−1] 

∴ 𝐻 ∘ 𝑊−1 ∘ 𝑊(𝑛) = 𝐻(𝑛) 

∴ 𝐻(𝑛) = 𝐻(𝑛) 
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Hence, we have the equation of the catenary: 

𝑓(𝑊(𝑛)) = 𝐻 ∘ 𝑊−1(𝑊(𝑛)) 

[𝑊(𝑛) = 𝑥 and 𝑓(𝑊(𝑛)) = 𝑦] 

∴ 𝑦 = 𝐻 ∘ 𝑊−1(𝑥) 

 

4.3 Defining W(n) and H(n)   

As proved in section 2.3, the width of the second level catenary, 𝐷, can be expressed 

as follows: 

𝐷 = 2𝐿 ∙ (cos 𝜃1 + cos 𝜃2) 

To find the width of catenaries of higher levels, one simply must add more terms of 

cos 𝜃𝑛. The width of a third level catenary for example is written like this: 

𝐷 = 2𝐿 ∙ (cos 𝜃1 + cos 𝜃2 + cos 𝜃3) 

If one struggles to make intuitive sense out of this, it may help to look at Figure 10. 

The general expression for the width of a catenary of the level, 𝑛, can be expressed as 

follows: 

𝐷(𝑛) = 2𝐿 ∙ ∑ cos 𝜃𝑖

𝑛

𝑖=1

 

[𝜃𝑖 = arctan((2𝑖 − 1) ∙ tan 𝜃1)] 

∴ 𝐷(𝑛) = 2𝐿 ∙ ∑ cos arctan ((2𝑖 − 1) ∙ tan 𝜃1)

𝑛

𝑖=1

 

The function 𝑊 however defines the width of one side of the catenary for a given 𝑛: 

𝑊(𝑛) =
𝐷

2
 

∴ 𝑊(𝑛) = 𝐿 ∙ ∑ cos arctan ((2𝑖 − 1) ∙ tan 𝜃1)

𝑛

𝑖=1
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The height of the catenary is expressed similarly to 𝑊(𝑛), except that cosine is replaced 

by sine: 

𝐻(𝑛) = 𝐿 ∙ ∑ sin 𝜃𝑖

𝑛

𝑖=1

 

[𝜃𝑖 = arctan((2𝑖 − 1) ∙ tan 𝜃1)] 

∴ 𝐻(𝑛) = 𝐿 ∙ ∑ sin arctan ((2𝑖 − 1) ∙ tan 𝜃1)

𝑛

𝑖=1

 

The function 𝐻(𝑛) simply adds the height of all the floors beneath and including the 

𝑛th floor. 

 

4.4 Redefining W(n) and H(n) as definite integrals   

The functions 𝑊(𝑛) and 𝐻(𝑛) have been defined, but in the form of series which are 

neither arithmetic nor geometric: 

𝑊(𝑛) = 𝐿 ∙ ∑ cos arctan ((2𝑖 − 1) ∙ tan 𝜃1)

𝑛

𝑖=1

 

𝐻(𝑛) = 𝐿 ∙ ∑ sin arctan ((2𝑖 − 1) ∙ tan 𝜃1)

𝑛

𝑖=1

 

The inputs of these functions are also limited to natural numbers. Given this limitation 

and the fact that each are written as a series, it is difficult to find the inverse of 𝑊(𝑛) 

and apply it to 𝐻(𝑛) . A possible solution is to approximate the series as definite 

integrals, opening the possibility for the functions to have a continuous domain rather 

than discrete. 

 

where 𝐧 ∈ ℕ 

where 𝐧 ∈ ℕ 
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 4.4.1 W(n) as a definite integral 

By representing the first two terms constituting the function 𝑊(𝑛) as rectangles, we 

can place them in order beneath the curve where the function is the summand of 𝑊(𝑛), 

which is cos arctan ((2𝑖 − 1) ∙ tan 𝜃1). We obtain a Riemann sum: 

 

Figure 74: f(i) = cos(arctan((2i-1) 𝑡𝑎𝑛 𝜃1))) 
 

[𝑡𝑎𝑛 𝜃1 = 0.5 and 𝐿 = 1] 

The area of the first rectangle, 𝐴1, equals the first term of 𝑊(𝑛) (in red). Likewise, 𝐴2 

equals the second term (in blue). We can approximate the sum of the first two terms as 

a definite integral: 

𝑊(2) = 𝐴1 + 𝐴2 ≈ ∫ cos arctan ((2𝑖 − 1) ∙ tan 𝜃1)

2

0

𝑑𝑖 

𝑖 

𝑓(𝑖) 

𝑓(𝑖) = cos arctan ((2𝑖 − 1) ∙ tan 𝜃1) 
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We continue filling the bottom of the curve with rectangles based on the terms 

constituting 𝑊(𝑛): 

 

 

Figure 85: f(i) = cos(arctan((2i-1) 𝑡𝑎𝑛 𝜃1))) 
 

[𝑡𝑎𝑛 𝜃1 = 0.5 and 𝐿 = 1] 

It is evident that the sum of the area of all the rectangles approximates to the total area 

under the curve, but not to a satisfactory degree. 

 

 

 

 

 

 

 

 

 

𝑓(𝑖) 

𝑖 
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We repeat filling rectangles beneath the curve, but this time with a smaller value for 

tan 𝜃1: 

 

Figure 16: f(i) = cos(arctan((2i-1) 𝑡𝑎𝑛 𝜃1))) 
 

[𝑡𝑎𝑛 𝜃1 = 0.005 and 𝐿 = 1] 

Interestingly, by lowering the value of tan 𝜃1 , the slope flattens out, making the 

approximation method of filling rectangles beneath the curve highly efficient. 

Geometrically, the flattening of the curve makes intuitive sense as simplified catenaries 

with a small value for 𝜃1, have a smaller change in slope, and are therefore flatter. We 

can conclude the following: 

lim
tan 𝜃1→0

𝐿 ∙ ∑ cos arctan ((2𝑖 − 1) ∙ tan 𝜃1)

𝑛

𝑖=1

= lim
tan 𝜃1→0

𝐿 ∙ ∫ cos arctan ((2𝑖 − 1) ∙ tan 𝜃1)

𝑛

0

𝑑𝑖 

In conclusion, for infinitesimal values of tan 𝜃1, we have the following expression for 

𝑊(𝑛): 

𝑊(𝑛) = 𝐿 ∙ ∫ cos arctan ((2𝑖 − 1) ∙ tan 𝜃1)

𝑛

0

𝑑𝑖 

From here on, we will imagine tan 𝜃1 and 𝐿 as infinitesimal in value to mimic a real 

catenary, but we do not assume that they both approach zero proportionally. Also, for 

𝑓(𝑖) 

𝑖 

where 𝐧 ∈ ℝ 
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the sake of simplicity, I will substitute tan 𝜃1  with 𝜃1  since tan 𝜃1 = 𝜃1  for 

infinitesimal values of 𝜃1. Therefore: 

lim
𝜃1→0

𝑊(𝑛) = 𝐿 ∙ ∫ cos arctan ((2𝑖 − 1) ∙ 𝜃1)

𝑛

0

𝑑𝑖 

We use Wolfram Alpha’s online integral calculator2 to solve the integral: 

𝐿 ∙ ∫ cos arctan((2𝑖 − 1) ∙ 𝜃1)

𝑛

0

𝑑𝑖 =
𝐿

2 ∙ 𝜃1

∙ sinh−1((2𝑛 − 1) ∙ 𝜃1) +
𝐿

2 ∙ 𝜃1

∙ sinh−1 𝜃1 + ∁ 

We proceed by simplifying the result. We label the ratio between 𝐿 and 𝜃1 as 𝑟: 

𝐿

𝜃1
= 𝑟 

This will become a parameter for the equation of the catenary: 

∴ 𝑊(𝑛) =
𝑟

2
∙ sinh−1((2𝑛 − 1) ∙ 𝜃1) +

𝑟

2
∙ sinh−1 𝜃1 + ∁ 

Further simplification is done by assuming ∁ to be zero, and eliminating the constant, 

𝑟

2
∙ sinh−1 𝜃1, as it approaches zero: 

lim
𝜃1→0

 
𝑟

2
∙ sinh−1 𝜃1 = 0 

∴ 𝑊(𝑛) =
𝑟

2
∙ sinh−1((2𝑛 − 1) ∙ 𝜃1) 

 

 4.4.2 H(n) as a definite integral 

Re-expressing 𝐻(𝑛) as an integral is justified by the same logic as with 𝑊(𝑛). By 

decreasing the value of tan 𝜃1, the curve of the function of the summand of 𝐻(𝑛) 

flattens out, making the sum of the area of the rectangles identical to the area under 

the curve.  Here are two diagrams of the function sin arctan((2𝑖 − 1) ∙ tan 𝜃1), with 

two different values of tan 𝜃1: 

                                                        
2 https://www.wolframalpha.com/calculators/integral-calculator/ 
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Figure 17: f(i) = sin(arctan((2i-1) 𝑡𝑎𝑛 𝜃1))) 

[𝑡𝑎𝑛 𝜃1 = 0.5 and 𝐿 = 1] 

 

Figure 98: f(i) = sin(arctan((2i-1) 𝑡𝑎𝑛 𝜃1))) 

[𝑡𝑎𝑛 𝜃1 = 0.005 and 𝐿 = 1] 

𝑓(𝑖) 

𝑓(𝑖) 

𝑖 

𝑖 

𝑓(𝑖) = sin arctan ((2𝑖 − 1) ∙ tan 𝜃1) 
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The curve is so flat that the rectangles are no longer visible. The important point 

however is that the shapes fill the space efficiently, due to the flat curve aligning almost 

perfectly with the horizontal sides of the rectangles.                                                                                                                                     

Figure 18 is deceptive in the sense that it makes it look like the function approaches 0, 

while it does in fact approach 1 as 𝑖 approaches infinity. This makes intuitive sense by 

imagining that the segments in the far infinite end of the catenary will eventually stand 

vertically. We can conclude with the following limit: 

lim
tan 𝜃1→0

𝐿 ∙ ∑ sin arctan ((2𝑖 − 1) ∙ tan 𝜃1)

𝑛

𝑖=1

= lim
tan 𝜃1→0

𝐿 ∙ ∫ sin arctan ((2𝑖 − 1) ∙ tan 𝜃1)

𝑛

0

𝑑𝑖 

∴ 𝐻(𝑛) = 𝐿 ∙ ∫ sin arctan ((2𝑖 − 1) ∙ tan 𝜃1)

𝑛

0

𝑑𝑖 

We solve the definite integral using Wolfram Alpha’s online integral calculator2 once 

again to obtain our new expression for 𝐻(𝑛): 

𝐿 ∙ ∫ sin arctan ((2𝑖 − 1) ∙ tan 𝜃1)

𝑛

0

𝑑𝑖 =
𝐿

2 ⋅ tan 𝜃1
∙ √(2𝑛 − 1)2 ⋅ tan2 𝜃1 + 1 −

𝐿

2 ⋅ tan 𝜃1
∙ √tan2 𝜃1 + 1 + ∁ 

[tan 𝜃1 → 𝜃1 𝑎𝑛𝑑 ∁ = 0] 

∴ 𝐻(𝑛) =
𝐿

2 ∙ 𝜃1
∙ √(2𝑛 − 1)2 ∙ 𝜃1

2 + 1 −
𝐿

2 ⋅ 𝜃1
∙ √𝜃1

2 + 1 

[
𝐿

𝜃1
= 𝑟] 

∴ 𝐻(𝑛) =
𝑟

2
∙ √(2𝑛 − 1)2 ∙ 𝜃1

2 + 1 −
𝑟

2
∙ √𝜃1

2 + 1 

We can simplify the constant,  
𝑟

2
∙ √𝜃1

2 + 1: 

lim
𝜃1→0

 
𝑟

2
∙ √𝜃1

2 + 1 =
𝑟

2
 

∴ 𝐻(𝑛) =
𝑟

2
∙ √(2𝑛 − 1)2 ∙ 𝜃1

2 + 1 −
𝑟

2
 

 

where 𝐧 ∈ ℝ 
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4.5 Solving 𝑯 ∘ 𝑾−𝟏(𝒙) 

Now that the functions have been rewritten such that they have continuous domains, 

we can resume solving the following composition: 

𝑓(𝑥) = 𝐻 ∘ 𝑊−1(𝑥) 

We find the inverse of 𝑊(𝑛) as follows: 

𝑊(𝑛) =
𝑟

2
∙ sinh−1((2𝑛 − 1) ∙ 𝜃1) 

[𝑊(𝑛) → 𝑥 and  𝑛 → 𝑊−1(𝑥)] 

∴ 𝑥 =
𝑟

2
∙ sinh−1((2 ∙ 𝑊−1(𝑥) − 1) ∙ 𝜃1) 

∴
2

𝑟
∙ 𝑥 = sinh−1((2 ∙ 𝑊−1(𝑥) − 1) ∙ 𝜃1) 

∴ sinh(
2

𝑟
∙ 𝑥) = (2 ∙ 𝑊−1(𝑥) − 1) ∙ 𝜃1 

∴ 𝑊−1(𝑥) =
1

2 ∙ 𝜃1
∙ sinh

2𝑥

𝑟
+

1

2
 

Finally, we apply 𝑊−1(𝑥) to the domain of 𝐻: 

𝑓(𝑥) = 𝐻 ∘ 𝑊−1(𝑥) 

∴ 𝑓(𝑥) =
𝑟

2
∙ √(2 ∙ (

1

2 ∙ 𝜃1
∙ sinh

2𝑥

𝑟
+

1

2
) − 1)

2

∙ 𝜃1
2 + 1 −

𝑟

2
 

∴ 𝑓(𝑥) =
𝑟

2
∙ √(

1

𝜃1
∙ sinh

2𝑥

𝑟
)

2

∙ 𝜃1
2 + 1 −

𝑟

2
 

∴ 𝑓(𝑥) =
𝑟

2
∙ √sinh2

2𝑥

𝑟
+ 1 −

𝑟

2
 

Since the hyperbolic sine and cosine satisfy the following relation, we can simplify: 

[cosh2 𝑢 = 1 + sinh2 𝑢]3 

                                                        
3 http://math2.org/math/trig/hyperbolics.htm 
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∴ 𝑓(𝑥) =
𝑟

2
∙ cosh

2𝑥

𝑟
−

𝑟

2
 

If we consider 𝑟 to be 2, we arrive at the following cartesian equation of the catenary: 

𝑦 = cosh 𝑥 − 1 

 

Figure 19: y = cosh(x)-1 

[𝑟 = 2] 

The equation can be written differently by substituting cosh 𝑥  with its exponential 

form, revealing Euler’s number: 

[cosh 𝑥 =
𝑒𝑥+𝑒−𝑥

2
]3 

∴ 𝑦 =
𝑒𝑥 + 𝑒−𝑥

2
− 1 

 

4.6 Comparing the equation with simplified catenaries 

By recalling section 4.4.1, tan 𝜃1  was approximated as 𝜃1 , and the parameter, 𝑟 , 

equates to 
𝐿

𝜃1
. Hence, we can modify the equation of the catenary back into its un-

simplified form: 

𝑦 =
𝐿

2 ∙ tan 𝜃1
∙ cosh

2𝑥 ∙ tan 𝜃1

𝐿
−

𝐿

2 ∙ tan 𝜃1
 

x 

𝑦 
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Interestingly, the parameter gives us the ability to create catenaries which resemble 

simplified ones. Here is an example of a constructed second level catenary on a real 

catenary, with the same values for 𝐿 and 𝜃1: 

 

Figure 20: A second level catenary on a real catenary 

[𝜃1 = 30° and 𝐿 = 2] 

If the slope of the line drawn through the bottom and adjacent atom and the average 

distance between the nuclei in a chain of atoms are known, one should, in theory, be 

able to replicate the curvature of the chain with high accuracy (assuming the chain of 

atoms to be inelastic).  

 

 

 

 

𝑥 

𝑦 
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5. Conclusion 

This approach to deducing the shape of the catenary stands out from the traditional 

solutions as the math involved is less advanced. This allows for a wider range of people, 

including high school students, to comprehend the derivation of the equation of the 

catenary (with the help of an integral calculator). It also serves as an example of a 

relevant application of function composition: a subchapter in many high school math 

courses which seems to lack examples of practical applications. 

 

Perhaps the most innovative aspect of this method is its reductionist interpretation of 

the catenary as masses on a string. It looks at the catenary in its essential form: atoms 

bonded together, forming a flexible chain. Analogously to the simplified catenary, the 

masses are atoms and the weightless string connecting the masses are chemical bonds. 

One could argue that this description of the catenary is more authentic than the 

traditional mathematical analysis which solely looks at the catenary as a curve. The 

mechanical flavour of this derivation also provides a new and insightful meaning to the 

parameter of the equation, 𝑟, as the ratio between 𝐿 and tan 𝜃1. Additionally, it dictates 

the minima of the catenary to be positioned at origin in the face of any value for the 

ratio, 𝑟, which is a practical feature. 
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7. Appendix 
 
Conventional method of finding the cartesian equation of a catenary: 

 
https://www.youtube.com/watch?v=O2MCBzw6kVg 

https://www.youtube.com/watch?v=O2MCBzw6kVg

