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0.1 Introduction

0.1.1 Scope of Work

Rocket Science has been looked upon as a complex field of science with a huge poten-

tial for innovation by the academic community. Yet, one can study such a complex

system by analyzing a simple, if not, ideal model using Newtons laws. It came to

mind that investigating such a complex system, with the help of a simplified model,

might prove an interesting study. This study is an attempt to understand, and per-

haps recommend, a margin for how much fuel is needed to reach the optimal height

of a rocket. Subsequently, an experiment was designed in which a model rocket was

launched with varying amounts of water and compared to a simulation based on a

simplified model. The first objective of this study is to develop an intuition as to

how varying the water affects the height of the rocket. An extensive analysis of the

uncertainties of the experimental setup was included as part of understanding how it

influences the experiment. The second objective is to verify, if possible, the exper-

iment with the theory and recommend a margin for which the height is optimized.

Consequently an evaluation of the assumptions made in the model and the validity

of conclusions made on this subject are included.

0.1.2 Research Question

How does variation in water influence the optimal height of a rocket before

burnout?
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0.2 Background Information and Literature

0.2.1 Conservation of Momentum

The momentum in a closed system is conserved. Using this fact one can arrive at the

following conclusion in which ve represents the exhaust velocity of the rocket

T = ve
dM

dT
[2] (1)

The change in mass can be applied by using the principle of conservation of mass.

This allows us to express thrust in terms of pressure.(Refer to appendix A and D for

a detailed derivation)

T = 2(P − Pa)Ae[3] (2)

0.2.2 Conservation of Energy

In order to solve for thrust one needs to determine the exhaust velocity. Assuming

in-compressible, non-viscous and irrotational flow one can use Bernoulli’s equation

in an attempt to find the exhaust velocity. This results in an equation relating the

exhaust velocity to the change in static and dynamic pressure.

ve =

√
2(P − Pa)

ρw
[6] (3)

A rigorous derivation of this has been presented in appendix C.

0.2.3 Work done by launcher Rod

A launcher Rod will be used in the experiment to launch the water rocket. Hence, the

initial conditions can be determined by considering the work done by the launcher

rod. Given the assumption that the gas behaves as an ideal gas one could arrive at

the following relation
pf
p0

= (
V0
Vf

)
γ

[4] (4)

Using this fact, and conservation of energy one can conclude that the total work, where

k in PkVk refer to the state of the gas.(Refer to appendix A for detailed derivation)

W =
1

γ − 1
[P0V0 − PfVf ]− Patm(Vf − V0)[4] (5)
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0.2.4 Adiabatic Expansion

Equation 13 presents the thrust in terms of pressure. But the pressure in the rocket

is still an unknown. Hence, an equation for pressure is needed.

The rocket launches, as it expels the water in which the compressed air expands

considerably fast pushing out a significant amount of water from the bottle. Assuming

that the air behaves as an ideal gas, a good approximation would be to assume that

there was no heat exchange between the gas and its surroundings resulting in an

adiabatic expansion.

Adiabatic expansion could be formulated as follows

PV γ = K (6)

In other words, this is the same as stating that

PV γ = P0V
γ
0 (7)

where Po and Vo are the intial pressure and volume of air. Re-arranging equation 4

in terms of pressure gives

P =
P0V

γ
0

V γ
(8)

Differentiating both sides by time gives

dp

dt
= −γP0V

γ
0

V 1+γ

dV

dt
(9)

Note that the change in volume is the exhaust velocity multiplied by its respective

area(Refer to appendix D)
dp

dt
= −γP0V

γ
0

V 1+γ
veAe (10)

Rearranging equation 8 for V gives

V =
P0V

γ
0

P

1
γ

(11)

Substituting equation 11 into 12 gives

dp

dt
= −γ P0V

γ
0

P0V
γ
0

P

1
γ
1+γ veAe (12)

Substituting equation 3 for exhaust velocity gives

dp

dt
= −γ P0V

γ
0

P0V
γ
0

P

1
γ
1+γ

√
2(P − Pa)

ρw
Ae (13)

Equation 13 could now be integrated to find an expression for the pressure. However,

this proves to be quite complex hence an iterative solution will be attempted.
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0.2.5 Drag

To make the mathematical model realistic it is important to include drag.

The drag1 force can be expressed as

D =
1

2
CdAρairv

2[5] (14)

where Cd is the drag coefficient, A is the area and v is the velocity. Note that the

drag coefficient is independent of the size of the object and speed of airflow under

subsonic speeds.

The drag coefficient, area and density can be encapsulated in a single constant allow-

ing the simplification of equation 14 to

D = K ∗ v2 (15)

0.2.6 Mass

Determining the mass of the rocket as a function of pressure is relatively simple.

Expressing mass in terms of volume might prove to be a good strategy

M = ρV (16)

The volume of the water decreases until all the water is ejected out of the nozzle.

Hence the volume is simply the difference between the total volume, Vt, and the

volume of air, V. Using equation 7 this could be written as

M = ρw(VT − (
P0V

γ
0

P
)

1
γ

) (17)

Adding the dry mass of the rocket, mr, leads to

M = ρw(VT − (
P0V

γ
0

P
)

1
γ

) +mr[3] (18)

1https://www.grc.nasa.gov/WWW/k-12/airplane/drageq.html
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0.3 Simulation

The simulation will be modelled using the equations derived from the Information

and Literature section.

0.3.1 Iterative Solution

The first step is to consider the sum of forces acting on a rocket. Consider the diagram

below.

Figure 1: Adapted from waltonaero.wikidot.com

Given the coordinates in the diagram, the external forces on a rocket are∑
F = T −D −W (19)

Substituting equations 2, 15 for thrust and drag gives∑
F = 2(P − Pa)Ae −K ∗ v2 −mg (20)

Dividing by the mass gives an expression for the acceleration in terms of pressure and

volume ∑
a =

2(P − Pa)Ae −K ∗ v2

M(P )
− g (21)

The pressure can be determined iteratively using equation 13.

dp

dt
= −γ P0V

γ
0

P0V
γ
0

P

1
γ
1+γ

√
2(P − Pa)

ρw
Ae (22)

Multiplying both sides by change in time gives

dp = −γ P0V
γ
0

P0V
γ
0

P

1
γ
1+γ

√
2(P − Pa)

ρw
Aedt (23)

In other words equation 23 can be approximated as

Pn+1 = pn − γ
P0V

γ
0

P0V
γ
0

Pn

1
γ
1+γ

√
2(Pn − Pa)

ρw
Ae∆t (24)

Equation 24 allows iterative calculation for the pressure based on a time step delta t.
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Using kinematic equations it is trivial to formulate that acceleration is change in

velocity over time

a =
∆v

∆t
(25)

It was found that acceleration is a function of pressure and velocity. Equation 25 is

the same as claiming that

Vn+1 = Vn + a(Pn, vn)∆t (26)

Equation 26 allows the calculation of velocity in an iterative fashion. Using the same

procedure, it is trivial to find the height as a function of velocity.

yn+1 = yn + vn∆t (27)

Using equations 21, 24, 26 and 27 it is possible to find the height of the rocket with

small time increments.

0.3.2 Constants and initial conditions

There are several constants and initial conditions that needs attention before imple-

menting the solution discussed in the previous subsection.

0.3.2.1 Precision

Eulers method of estimation is more accurate when the time step is quite small. This

study uses a 4 decimal time step hence all the constants and values will be expressed

in 4 decimal places.

0.3.2.2 Drag Constant K

To calculate the drag force acting on the rocket, the constant k, needs to be deter-

mined.

The constant, k , is equal to

k =
1

2
CdAρair (28)

The drag of a water rocket has a small effect on the acceleration hence the drag

coefficient, Cd, is not critical. But it is worth mentioning that the drag coefficient

is independent of the size and speed of the airflow but is dependent upon the shape.

Since the body is roughly ellipsoidal a value of 0.05 2 is used for the body.

2Nasa provides an average of 0.05 for the drag coefficient
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The fins has a major contribution to the drag hence a value of 0.1000 3 is utilised.

The area of the body is the cross-section normal to the airflow while the area of the

fins,lateral area, is parallel to the airflow. The total area is thus the area of fins and

the body. This was approximated to be around 2.9278 ∗ 10−3m2.

A value of 1.225kgm−3 was taken as the average for the density of air. Plugging the

values in equation 41 results in

k = 2.689 ∗ 10−4kgm−1 (29)

The necessary constants have been summarised in the table below.

Constants

Gamma(γ) 1.4000
Desnity(ρw) 1000.0000kgm−3

Atmospheric Pressure(Pa) 101325.0000Pa
Time Step(dt) 0.0001s
Initial Pressure(P0) 551580.0000Pa
Dry Mass(Mr) 0.4000kg
Cross-sectional area(Ae) 1.963*10−5m2

Drag Constant(k) 2.689*10−4kgm−1

Total Volume(VT ) 0.0020m3

Gravitational Constant(g) 9.8100ms−2

Table 1: A table of constants

0.3.3 Summary of Assumptions made in the Model

• Adiabatic Heat Transfer

• In-compressible Flow

• Ideal Gas Assumption

• No Energy Loss

• non viscous, irrational flow

3A nominal value for Drag was used
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0.3.3.1 Initial Velocity

The next constant worth considering is the initial velocity.This is done by considering

the total work done by the rod.However, the work done described by equation 5

requires the final state of pressure and volume. To tackle this, it was assumed that

the final pressure is in equilibrium to the atmospheric pressure neglecting the residual

pressure.

Since both the initial states of pressure and initial volume is known, the final

volume was calculated using equation 11 to give

Vf =
VT − Vw
0.5066

1
γ

(30)

Using conservation of energy one might argue that

W = ∆K + ∆P (31)

Since at the start the change in potential energy is almost 0,substituting equation 5

for work gives
1

γ − 1
[P0V0 − PfVf ]− Patm(Vf − V0) =

1

2
M0v

2
0 (32)

Solving equation 32 for initial velocity gives

v0 =

√
2

γ−1
[P0V0 − PfVf ]− 2Patm(Vf − v0)

M0

(33)

0.4 Design

The design of the simulation is based on the condition that the volume of water is

above 0.

condition = VT − (
P0V

γ
0

P
) (34)

The second term in equation 34 refers to the remaining amount of water in the rocket.

The simulation is made such that when this condition breaks, maximum height is

recorded.

0.4.0.1 Program

The Simulation[1]4 was implemented in java(Refer to appendix F for the source code)

and the data points were exported to Graph Pad Prism5for analysis.

4This was programmed by Akash Amalan(BSc ComputerScience and Engineering) Github-
Source:https://github.com/AJ730

5https://www.graphpad.com/scientific-software/prism/
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0.5 Analysis and Graphical Representation

This section introduces the graphs derived from the simulation with the intention of

uncovering the trends in the data points.

0.5.1 Results

The height was simulated for volumes of water as a fraction of the total volume

ranging from 10% to 80%. Moreover, 0% and 100% were ignored as there is no

pressure difference hence, no thrust. Similarly, 90% was also neglected as it was

found that the thrust was not enough for lift off. The results found above were then

plotted on a height versus time graph and presented in Appendix E.

0.5.2 Observations

It is not surprising that the results imply a one to one relationship between height

and time. However, as the percentage of water increases the graph flattens out and

in the most extreme case shows a parabolic curve. An instance from Appendix C was

chosen and presented below.

Figure 2: Water filled up to 30% Figure 3: Water filled up to 80%

There is a drastic difference in shape between figure 5 and figure 6. Figure 5 seems

intuitive as height is proportional to time, however figure 6 exhibits a parabola. The

reason might be that not all water is used for the thrust resulting interestingly in a

parabola.
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It might also prove interesting to find a correlation, if it exists, between the mass

and the maximum height. Consider the graph below.

Figure 4: Graph illustrating optimum volume of water

The graph above, illustrates a parabola implying a quadratic relationship between the

height and volume of water. It seems that the optimum amount of water is around

50%. However, in order to see how well it fits in a quadratic formula, an attempt to

a quadratic regression was made using GraphPad.

This resulted in a R squared value of 0.9337 with a p test value of 0.6286. The

results seems to be well within the 95% confidence interval implying that a quadratic

relationship is indeed a good fit. The results from the statistical analysis performed

has been presented in the figure below

Goodness of Fit

Degrees of Freedom 5
R squared 0.9337
Sum of Squares 103.0
Points above curve 4
Points below curve 5
Number of runs 5
P value (runs test) 0.6286
Deviation from Model Not Significant

Table 2: Statistical Analysis for Quadratic fit
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0.6 Experiment

0.6.1 Experimental Setup

An experiment is designed to study the motion of a rocket in an attempt to compare

the theory with a real life experiment. To do so, different parts of a rocket was bought

and assembled prior to the experiment.

0.6.1.1 Design Choice

A nominal plastic bottle with a volume of 2 litres was used as the body of the rocket.

It was decided to cut the top of the bottle and replace it by pointy tip in an attempt

to decrease drag at flight and increase mass at the tip for a stable flight. Similarly

the bottom of the rocket was to be cut and replaced by a nose cone with an extremely

small nozzle of 5mm at the end to increase the change in pressure and thus achieve

greater height. Moreover, fins were to be attached at the bottom with the intention

of stabilising the launch phase and the flight phase of the rocket.

A trigger system was required to control the pressure prior to launch. This was done

by the inclusion of a mechanical switch system and a plug. It was decided that the

rocket was pressurised by a bicycles pump with an embedded pressure gauge to read

off the pressure conveniently. Consequently, a launchpad with a launch rod was used

as a platform for stable launching.

0.6.1.2 Assembly

The different parts that was assembled to construct the water rocket have been por-

trayed in the images below.

Figure 5: Nozzle
Overlay

Figure 6: Fin
and Top Overlay

Figure 7: Bicycle
Pump

Figure 8:
Launchpad
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The Top was attached to the upper part of the bottle while the fins were attached

to the bottom circumference of the bottle. The Nozzle overlay was attached to the

bottom opening of the bottle and the assembled rocket was placed on the launchpad.

The pump was then connected to the nozzle via the trigger. The trigger comprises

of a plug which is pushed out mechanically when triggered. Once the rocket has

been pressurised the plug falls in and seals the rocket. Once triggered the plug is

mechanically pushed out and the rocket is free for launch. This assembly allows us

to control the initial conditions such that the only dependent variable is the volume

of water. The figures below illustrate the final assembly of the rocket.

Figure 9: Assembled Rocket Figure 10: Digital Motion Camera
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0.6.2 Measurement Description

The diameter of the bottle was determined by measuring the circumference of the

bottle and a ruler was used for the measurement of the nozzle. The volume of the

bottle was determined to be 2 litres by the product label and the dry mass was found

by weighing the rocket on a kitchen scale.

0.6.2.1 Uncertainty in Measurement

The diameter is found by dividing the circumference by the constant PI. The un-

certainty in circumference is mainly due to the parallax and random error. Hence, a

value of ±0.005m was assigned.

The relative uncertainty of the circumference is thus adapted as the uncertainty of

the diameter.

D = 0.060m± 0.005

0.060
100% (35)

The cross sectional area of the rocket is is thus expressed as

A = 0.00288± 2
∆D

D
100% = 0.00288± 2

0.005

0.06
100% (36)

The diameter of the nozzle was measured to be 5mm using a caliper and the uncer-

tainty was determined to be ±0.0001 due to parallax error.

D = 0.005m± 0.0001

0.005
100% (37)

The area can then be determined to be

Ae = 1.963 ∗ 10−5m+ 2
∆r

r
= 1.963 ∗ 10−5m± 0.0002

0.005
100% (38)

The dry mass was measured to be 0.4kg with an uncertainty of ±0.001kg. This is

the same as

M = 0.400kg ± 0.001

0.400
100% (39)

0.6.2.2 Constants

Volume(m3) Mass(kg) Diameter(m) Area(m2) Diameter(Nozzle(m)) Area(Nozzle(m2))

0.002 0.400 0.06 0.011 0.005 0.002

13



0.6.3 Instrument Description and Calibration

The instruments used to collect data include: ruler,thread,caliper, tracker(graphing

Software)6 and a 60 fps camera.

The camera, unfortunately, was not ideal due to the low frame rate. But to com-

pensate for this, the experiment was recorded in slow motion. Nevertheless, it is

important to consider how far the camera should be placed from the rocket to be able

to record the whole flight. The field of view of the camera was read to be 65 degrees.

After running several the simulation several times it was found that the maximum

height of the rocket was in the range of 45 to 50 metres. This information can be

used to find the minimum distance needed to film the experiment.

Consider the diagram below.

Figure 11: Determining minimum horizontal distance for video capture

The angle α was taken to be 65 degrees and the height Hr was taken to be 50 metres.

Using the simple laws of trigonometry Br can be expressed as a function of Hr and

α.

Br =
1

2

Hr

tan α
2

= 39m (40)

Thus the camera was placed 39m from the launch position of the rocket. However,

this would have repercussions as the quality of the video decreased drastically. Nev-

ertheless, 39 meters is too far of a distance for a normal camera. But this study uses

6https://www.graphpad.com/scientific-software/prism/
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a motion detecting camera, as previously showed in figure 13, which is able to zoom

in with a magnitude of 20x. The camera was calibrated such that all rotations and

movements parallel and normal to the z axis are restricted.

The graphical analysis program Tracker creates a point mass on the current posi-

tion of the rocket and increments it over each frame. The point mass was chosen to

be at the centre of the rocket due to the low quality of the camera. Despite, the drop

in quality Tracker was able to track the rocket in each frame.

0.6.4 Experimental Procedure

The rocket was assembled as presented in figure 12. Additionally, a thread was

connected to the rear of the rocket and the camera was set in position to record. A

thread was added as it serves as a basis of comparison between the height calculated

by tracker and that of the thread.

The experiment was conducted in a total of 8 trials. Each conducted twice in order

to minimise the bias in the experimental data. Each trial was conducted by filling

the bottle with water ranging from 10% of the total volume to 90% which was then

followed by pressurising the rocket until an initial pressure of 551580Pa.

Once the initial pressure was reached, the camera was spontaneously set to record

and the trigger was released. Once the rocket fell back to the ground the thread was

measured and the camera was paused until the next trial.

0.6.5 Observations

It was observed that the rocket did not have a straight trajectory. One of the main

reason for this might be the wind as the field was surrounded by trees. Another

interesting observation was that all trials were within the 50m limit. This reinforces

the model as it was theoretically determined that the maximum height would not

exceed 50m.
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0.6.6 Experimental Results

The following table summarises the experimental results for the height by measuring

the thread with a tape.

Volume Ratio Initial Volume of Water(ml) Measured Height 1(m) Measured Height 2(m)
Amortised Height(m)

0.1 0.200± 0.005 4.00± 0.50 5.00± 0.50
0.2 9.000± 0.005 10.00± 0.50 11.00± 0.50
0.3 35.000± 0.005 36.00± 0.50 37.00± 0.50
0.4 39.000± 0.005 42.00± 0.50 44.00± 0.50
0.5 48.000± 0.005 49.00± 0.50 50.00± 0.50
0.6 40.220± 0.005 45.00± 0.50 47.00± 0.50
0.7 22.000± 0.005 23.00± 0.50 24.00± 0.50
0.8 9.380± 0.005 8.20± 0.50 9.00± 0.50

Table 3: Table representing the height recorded by measuring the thread

The height calculated through the software(Tracker) has also been depicted below.

However, the error in the height introduced by taking the average between the data

points in each trial. In other words, the error is dependent on the standard deviation

between each set of points.

Volume Ratio Initial Volume of Water(ml) Calculated Height(m)

0.1 0.200± 0.005 4.20± 0.50
0.2 9.000± 0.005 10.05± 0.14
0.3 35.000± 0.005 36.28± 0.14
0.4 39.000± 0.005 45.23± 1.62
0.5 48.000± 0.005 50.56± 0.28
0.6 40.220± 0.005 48.012± 1.51
0.7 22.000± 0.005 23.55± 0.28
0.8 9.380± 0.005 8.35± 0.08

Table 4: Table representing the maximum height calculated by Tracker

0.6.6.1 Comparison of methods

It seems that the calculated height, with tracker, is within the error margin of the mea-

sured height.Table 3 has two data points hence an average height is needed.Therefore

the heights have been amortised and presented in table 5.However, this study will use

the calculated height, for consistency ,as the program was also used in other parts of

this study.

16



Volume Ratio Initial Volume of Water(ml) Amortised Height(m)

0.1 0.200± 0.005 4.50± 1.00
0.2 9.000± 0.005 10.50± 1.00
0.3 35.000± 0.005 36.50± 1.00
0.4 39.000± 0.005 43.00± 1.00
0.5 48.000± 0.005 49.50± 1.00
0.6 40.220± 0.005 46.00± 1.00
0.7 22.000± 0.005 23.50± 1.00
0.8 9.380± 0.005 17.20± 1.00

Table 5: Table representing the amortised height recorded by measuring the thread

0.6.6.2 Graphical Representation and Comparison

A comparison of the results of the simulation and the theoretical results were made

and presented in the graphs in Appendix G. A sample of the graphs have been pre-

sented here in order to derive some conclusions from the comparison between the

simulation and experiment.

Figure 12: Height versus Time for a ratio of 10%

Figure 14 and Table 3 depicts that only 2 points was attained from the experiment

as each time frame was 0.2 seconds and the flight was under 0.5 seconds. Given this

premise, it is not possible to derive a valid conclusion. However, it does seem to

follow the theoretical line within the error margin. Moreover, it seems at 10% only a

17



mere height of approximately 4m was reached implying that the water is too little to

achieve even a decent height.

The second graph that might be of interest is that of 30% water since numerous sci-

entific journals claim that 30% is the optimum volume of water to reach maximum

height. Nevertheless, the model and the experiment has shown otherwise. But it is

of interest to underline as to what degree the experimental agrees with the model.

Figure 13: Height versus Time for a ratio of 30%

The graph above shows that the theoretical line is still within the error of the exper-

imental. But it seems that the experimental height is slightly above the theoretical.

Yet, it is not enough evidence to disprove the model.The software analysis is suscep-

tible for the deviation as more often than not the point mass was tracked above the

rocket than at the centre of the rocket.

The maximum height was recorded to be 49.50m at a volume ratio of 0.5. Refer-

ring back to figure 7, it is apparent that this agrees with the model. However, in

order to conclude that the experiment indeed follows the model, one has consider the

overall trend and the accuracy of the data points. Consider the graph below.
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Figure 14: Height versus Time for a ratio of 50%

The graph above depicts that the general trend is linear. Nevertheless, only 3

out of 9 are within the margin of the theoretical trend line.Furthermore, it is also

apparent that the experimental values tend to be higher than the theoretical values

as in the previous graphs.

Given the above premise, it is hard to conclude that the experiment follows the model

consistently. But it can be speculated that without the influence of wind and over-

estimation of point mass the experimental values would prove to be more accurate.

On the other hand, it is quite evident that the variance in table 6, for a volume ratio

of 0.5, is quite small suggesting that the points were rather precise.

It was also noticed in the simulation that the volume ratios 0.7 and 0.8 had a excep-

tional parabolic behaviour. It would be of uttermost interest to see if this behaviour

is replicated in the experiment. Consider the graph below.
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Figure 15: Height versus Time for a ratio of 80%

The experimental trend seems to adapt a parabolic behaviour as the simulation.

All the points seem to be within the error margin of the experiment suggesting that the

model is able to predict, rather accurately, the height gained by the rocket. Moreover,

it was noticed that water was found in the rocket after its descent. This reinforces

the conjecture that not all water was used for thrust implying that for most part of

the flight the object was in free fall. Consequently, it must be also pointed out that

there was no thrust at a volume ratio of 0.9 as predicted by the model.
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0.7 Evaluation and conclusion

This investigation has led to rather interesting conclusions. First of all, we noticed

that the graph for the optimal amount of water against height took interestingly a

parabolic shape implying that there is a fine balance between the water and air that

is needed for the highest range of the rocket. However, despite popular belief, the

optimum amount of water was not found to be 30% but rather 50%. But this does

not by any means conclude 30% as an unacceptable value but suggests that the thrust

is dependent upon a lot of factors. Such factors comprise of nozzle diameter, volume

and dry mass. In our case the rocket was small compared to the average rocket, with

a limited volume of 2 litres and an extremely small nozzle diameter of 5 mm but

in the case of a 6 litre volume it turns out that 30% is indeed the ideal amount for

maximum height. Nevertheless, it is conclusive that the optimum amount for the

rocket in test is 50% as shown both by experiment and simulation.

Secondly, we noticed that most of the experimental values were above the theoretical

graph rather than below.However, the reason for this is still unknown, but specula-

tion revolves around the fact that the drag was over-estimated when designing the

simulation. Moreover, we also noticed that the simulation that the derivation for the

initial velocity was not accurate mainly because of the assumption that there was

no residual pressure. This could have been improved by using the fact that the final

volume of gas should equal the volume of the bottle leading to a better approximation

of the initial velocity. There are number of uncertainties in the experiment. Part of

it was because of imprecise equipment used in measuring.Secondly the experiment

should have been repeated more than 2 times such that the investigation turns out

strong and more certain. Subsequently, it is undeniable that the wind had a drastic

influence on the experiment. This could have easily avoided by performing the ex-

periment indoors, if provided with the facility.

Quite a few questions emerge from this investigation. It would have been interesting

to test different liquids or to repeat the experiment with different nozzle lengths. It

would also be interesting to quantitatively measure the effect of drag in such a rigid

body. We believe that this investigation has shed light on the fact that the optimum

amount of water is dependent on the rocket itself and that there is no common value

for all water rockets. However, we believe that the investigation highlights how to

determine the maximum height using estimations such as Euler’s method.

Word Count: 4000 words
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Appendix A

Work Done by launcher Rod

[4] It is important to find the lift off initial condition as it will help in finding the

initial velocity. Force applied on a closed area can be formulated as

F = ∆PA (A.1)

The launcher rod experiences a change in pressure over the cross-sectional area. The

word over the length l can be described as

W =

∫ l

0

FlaunchRoddz (A.2)

Using equation A.2 it is possible to state that the force on the rod is the product of

change in pressure and area

W =

∫ l

0

(P − Patm)Adz (A.3)

Using the fact that Adz corresponds to the volume. Equation A3 can be simplified

to

W =

∫ Vf

v0

(P − Patm)dV (A.4)

Expanding equation A4 gives

W =

∫ vf

v0

PdV − Patm(Vf − V0) (A.5)

The gas expands from an initial volume,Vo, to a final volume,Vf. The work done in

this interval can be formulated as

W =

∫ Vf

V 0

Pdv (A.6)
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Substituting for P with equation A6 results in

W = P0V
γ
0

∫ Vf

V 0

V −γdv (A.7)

Integrating equation A7 yields

W =
1

γ − 1
P0[V0 − Vf (

V0
Vf

)
γ

] (A.8)

Re-arranging equation 8 results in

pf
p0

= (
V0
Vf

)
γ

(A.9)

Using equation A.9, equation A.8 can be simplified to

W =
1

γ − 1
[P0V0 − PfVf ] (A.10)

Hence, in total, the work done by the launcher rod is given by

W =
1

γ − 1
[P0V0 − PfVf ]− Patm(Vf − V0) (A.11)
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Appendix B

Conservation of Momentum

[2] Consider a closed system as represented by the diagram below.

Figure B.1: Adapted from github.io/physics/rocket-equation

Figure 1 shows a closed system. Thus using the conservation of momentum 1 gives

(M + dm)v = M(v + dv) + dm(v − ve) (B.1)

This simplifies to

dm ∗ ve = Mdv (B.2)

Dividing both sides by dt gives

M
dv

dt
=
dm

dt
ve (B.3)

Newtons second law states the following

F = ma (B.4)

The propelling force of a rocket is generally referred to as thrust.Comparing equation

3 and 4 shows that the thrust, T, of the rocket is due to the ejection of water, M ,

over time and the exhaust velocity.

T = ve
dM

dT
(B.5)

1https://www.math24.net/rocket-motion/
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Appendix C

Conservation of Energy

[6] It might be a challenge to measure the exhaust velocity. Assuming incompressible,

non-viscous, irrotational flow Bernoulli’s equations are applied along 2 points in the

streamline in an attempt to relate equation 5 to pressure. Consider the diagram

below.

Figure C.1: Rocket Launch Position

Take an arbitrary point 1 at the surface of the water and a point 2 outside the nozzle.

Pascal’s principle suggests that the height between points 1 and 2 results in a pressure

difference. However, since the height is considerably small the pressure difference is

neglected. Moreover, the velocity at the surface is neglected in comparison to the

velocity at the nozzle.

Applying Bernoulli’s equation at the streamline between the two points gives

P1 +
1

2
ρ1v

2
1 + ρg1y1 = P2 +

1

2
ρv22 + ρg2y2 (C.1)

Given the assumptions, equation 6 simplifies to

P1 = P2 +
1

2
ρv22 (C.2)
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A change of notation here is desired. Note that the Pressure at point 1 is the point

2 is the atmospheric pressure. Respectively the velocity at point 2 is the exhaust

velocity and the density at point 2 is that of water.

P = Pa +
1

2
ρwv

2
e (C.3)

Equation 8 can now be solved for the exhaust velocity as a function of pressure.

Rearranging equation 8 gives

ve =

√
2(P − Pa)

ρw
(C.4)
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Appendix D

Conservation of mass

[3] To determine the thrust it is also required to devise a way to find the mass flow.

To begin with the mass flow can be realised by the product of volume flow and the

density
dM

dt
=
dV

dt
ρw (D.1)

Consider the diagram below.

Figure D.1: picture adapted from Youtube Channel

Given a section of volume in a time frame one can argue that the change in volume

is equivalent to the exhaust velocity times the area.

dM

dt
= veAeρw (D.2)

Combing equations 11 and 5 give

T = v2eAeρw (D.3)

Substituting 9 for exhaust velocity would result in

T = 2(P − Pa)Ae (D.4)

Finding the thrust is thus determined by the pressure difference.
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Appendix E

Graphs

Figure E.1: Water filled up to 10%

Figure E.2: Water filled up to 20%
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Figure E.3: Water filled up to 30%

Figure E.4: Water filled up to 40%

Figure E.5: Water filled up to 50%
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Figure E.6: Water filled up to 60%

Figure E.7: Water filled up to 70%

Figure E.8: Water filled up to 80%
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Appendix F

Source Code

[1]

import java . awt . ∗ ;
import java . i o . Buf feredWriter ;
import java . i o . F i l e ;
import java . i o . F i l eWr i t e r ;
import java . i o . Pr intWriter ;
import java . u t i l . ∗ ;
import j x l . Workbook ;
import java . awt . Desktop ;
import java . u t i l . concurrent . TimeUnit ;

import j x l . wr i t e . ∗ ;
import j x l . wr i t e . Label ;

pub l i c c l a s s Main {

s t a t i c double gamma = 1 . 4 0 0 0 ;
s t a t i c double dens i tywater = 1000 .0000 ;
s t a t i c double PressureAtmospher ic = 101325 .0000 ;
s t a t i c double DeltaT = 0 . 0 0 0 1 ;
s t a t i c double Vtota l = 0 . 0 0 2 0 ;
s t a t i c double P0 =551580.0000;
s t a t i c double dryMass = 0 . 4 0 0 0 ;
s t a t i c double Ae = Math . PI ∗ ( 0 . 0 0 2 5∗0 . 0 0 2 5 ) ;
s t a t i c double K = 0 . 0 0 0 3 ;
s t a t i c double g = 9 . 8 1 0 0 ;

s t a t i c ArrayList<Double>outputHeight = new ArrayList ( ) ;
pub l i c s t a t i c double Pressure ( double P n , double Vair0 ) {
double Ve = Ae∗Math . s q r t ( 2 . 0 ∗ delataP )∗ DeltaT ;
double deltaP = ( P n − PressureAtmospher ic )/ dens i tywater ) ;
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double numerator = (gamma ∗ P0 ∗ Math . pow( Vair0 , gamma) ) ∗ Ve ;
\\
double ep i = Math . pow(P0 ∗ (Math . pow( Vair0 , gamma) / P n , ( double ) 1 ;
double denominator =Math . pow ( ( epi , ( double )1 / gamma) ) , 1.0+gamma ) ;

double r e s u l t = P n − ( double ) ( numerator ) / ( double ) denominator ;
r e turn r e s u l t ;
}
\\
pub l i c s t a t i c double Mass ( double P n , double Vair0 ){
double exp1 = P0∗Math . pow( Vair0 , gamma)/ P n ;
double Omega= Vtota l − Math . pow( exp1 , ( 1 /gamma)))+ dryMass ;
double mass = dens i tywater ∗(Omega)
re turn mass ;
}
\\
pub l i c s t a t i c double Ve loc i ty ( double P n , double v n , double Vair0 ){
double alpha = ( P n−PressureAtmospher ic )∗Ae −K∗v n∗v n ) ;
double Ve loc i ty = v n +((2∗ alpha )/ Mass ( P n , Vair0)−g )∗DeltaT ;
re turn Ve loc i ty ;
}
\\
s t a t i c double Height ( double H n , double P n , double V n , double Vair0 ){
double he ight = H n+Ve loc i ty ( P n , V n , Vair0 )∗DeltaT ;
re turn he ight ;
}
\\
pub l i c s t a t i c double f inalVolume ( double Vair0 ){
double r a t i o = ( ( double ) PressureAtmospher ic /( double )P0 ;
double f inalVolume = Vair0 /(Math . pow( r a t i o ) , 1 . 0 / ( double )gamma ) ) ;
r e turn f inalVolume ;
}
\\
pub l i c s t a t i c double f i n a l P r e s s u r e ( double va i r 0 ){
double p r e s su r e = Math . pow ( ( va i r 0 / Vtota l ) ,gamma)∗P0 ;
re turn pr e s su r e ;
}
\\
pub l i c s t a t i c double I n i t i a l M a s s ( double Vair0 ){
double Vwater = ( Vtotal−Vair0 ) ;
double Mass = dens i tywater ∗Vwater+dryMass ;
r e turn Mass ;
}
\\
pub l i c s t a t i c double WorkDone( double Vair0 ){
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double s t a t e s = P0∗Vair0−f i n a l P r e s s u r e ( Vair0 )∗Vtotal ;
double pv = PressureAtmospher ic ∗( Vtotal−Vair0 ) ;
double work = ( double )1/( double ) (gamma−1)∗( s t a t e s )−pv ;
re turn work ;
}
\\
pub l i c s t a t i c double I n i t i a l V e l o c i t y ( double Vair0 ){
double f r a c t i o n = 2∗WorkDone( Vair0 ) ) / ( I n i t i a l M a s s ( Vair0 ) ) ;
double i n i t i a l v e l o c i t y=Math . s q r t ( ( double ) ( f r a c t i o n ) ;
r e turn i n i t i a l v e l o c i t y ;
}
\\
pub l i c s t a t i c void Execute
( double P n , double Vair0 , double V n , double H n) throws Exception{
dpuble power = Math . pow(P0∗Math . pow( Vair0 , gamma)/ P n , ( 1 /gamma ) ) ;
double Condit ion = Vtota l − power ;
double P n 1 ;
double V n 1 ;
double H n 1 ;
double mass ;
i n t i = 0 ;
F i l eWr i t e r Output = new Fi l eWr i t e r (new F i l e ( l o c a l f i l e ) ) ;
// l o c a l f i l e= i n s e r t your d i r e c t o r y f o r output here
Buf feredWriter OuputBuffer = new Buf feredWriter ( Output ) ;
Pr intWriter OutputFlush = new PrintWriter ( OuputBuffer , t rue ) ;
whi l e ( Condit ion > 0){
P n 1 = Pressure ( P n , Vair0 ) ;
P n = P n 1 ;
mass = Mass ( P n , Vair0 ) ;
V n 1 = Ve loc i ty ( P n , V n , Vair0 ) ;
V n = V n 1 ;
H n 1 = Height (H n , P n , V n , Vair0 ) ;
H n = H n 1 ;
outputHeight . add (H n ) ;
OutputFlush . p r i n t l n (
” Pres sure ”+i+++” : ”+P n+”Height”+ i+” :+H n ) ;
i f (H n >0){
OutputFlush . p r i n t l n (H n ) ;
}

Condit ion = Vtota l − Math . pow(P0∗Math . pow( Vair0 , gamma)/ P n , ( 1 /gamma ) ) ;
}
}
\\
pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) throws Exception {
double Vwater = 0.5∗ Vtotal ;
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double Vair0 = Vtota l − Vwater ;
Execute (P0 , Vair0 , I n i t i a l V e l o c i t y ( Vair0 ) , 0 ) ;
F i l e e x c e l = new F i l e (”D:\\ t e s t . x l s ” ) ;
WritableWorkbook wworkbook ;
t ry {
wworkbook = Workbook . createWorkbook ( e x c e l ) ;
// Sheet name
WritableSheet wsheet = wworkbook . c r ea t eShee t (” F i r s t Sheet ” , 0 ) ;
//row 1
// Label l a b e l =new Label (0 , 0 , ”Time ” ) ;
// wsheet . addCel l ( l a b e l ) ;
// l a b e l = new Label (1 , 0 , ” Height ” ) ;
// wsheet . addCel l ( l a b e l ) ;
i n t row = 0 ;
i n t row2 = 0 ;
double time = 0 . 0 0 0 1 ;
i n t k = 0 ;
f o r ( double he ight : outputHeight ){
Label lab1 =new Label (0 , row++, Double . t oS t r i ng ( time ) ) ;
wsheet . addCel l ( lab1 ) ;
time = time +0.0001;
Label lab2 =new Label (1 , row2++, Double . t oS t r i ng ( ( double ) outputHeight . get ( k++)));
wsheet . addCel l ( lab2 ) ;
}
wworkbook . wr i t e ( ) ;
wworkbook . c l o s e ( ) ;
System . out . p r i n t l n (” f i n i s h e d ” ) ;
} catch ( Exception e ) {
System . out . p r i n t l n ( e ) ;
}
Desktop desktop = Desktop . getDesktop ( ) ;
i f ( e x c e l . e x i s t s ( ) ){
desktop . open ( e x c e l ) ;
TimeUnit .SECONDS. s l e e p ( 1 5 ) ;
Runtime . getRuntime ( ) . exec (” t a s k k i l l /IM e x c e l . exe ” ) ;
}\\ c l o s e a p p l i c a t i o n a f t e r 15 seconds
}
}
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