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1 INTRODUCTION 

The statistical analysis and modelling of the patterns, complexity and stochasticity of 

power prices is essential to understand and forecast their behaviour. Many financial 

models and formulae are derived based on the behaviour of prices for uses such as 

option-pricing. Using an accurate and suitable model is critical to avoid unacceptable 

financial risks. This essay focuses on the core assumptions of the widely-used Black-

Scholes mathematical formula for European call-option pricing to investigate the 

research question: How well do the Oslo, 2018, power prices satisfy the assumptions 

of normality and independence in the Black-Scholes option-pricing formula? 

This report is divided into three parts: understanding the relevant assumptions of the 

Black-Scholes formula, evaluating the usage of the forms of returns and testing the 

assumptions against spot-price data from the Norwegian power market. 

1.1 THE BLACK-SCHOLES FORMULA AND RISK-NEUTRAL PRICING  

A European call option gives the right, but not the obligation to purchase an asset at a 

specified exercise price and time. The Black-Scholes formula returns a single price for the 

option that eliminates any opportunity for arbitrage, meaning that the price allows no 

risk-free profit for a trader and is therefore often called the risk-neutral valuation of 

options (Ross, 2006).  

The price of a European call option CO is given by: 

𝐶𝑂 = 𝑆𝑜𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2) 

Where 𝑆𝑜 is the current price, X and T are the exercise price and time respectively, r is the 

risk-free interest rate, and 𝑁(𝑥) is the standard normal cumulative distribution function 

(CDF).  
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𝑁(𝑥) gives the probability for a random observation from the sample to be less than or 

equal to a certain value, 𝑥. 

The inputs of 𝑁(𝑥) are given by, 

𝑑1 =
ln (

𝑆𝑜

𝑋 ) + (𝑟 +
𝜎𝑟

2

2
) 𝑇

𝜎𝑟√𝑇
 

𝑑2 =  
ln (

𝑆𝑜

𝑋
) + (𝑟 −

𝜎𝑟
2

2
) 𝑇

𝜎𝑟√𝑇
 

Where, 𝜎𝑟   is the standard deviation of returns (Khan, 2013). Standard deviation, an 

indicator of market volatility, is given by: 

𝜎 = √
1

𝑛 − 1
∑ (𝑥𝑖 − 𝜇)2

𝑛

𝑖=1
 

Where n is the sample size, 𝑥𝑖  is a data point for  𝑖 = 1, 2, … , 𝑛, and 𝜇 is the mean. 

The probability, 𝑁(𝑑1), acts as a weight to 𝑆𝑜, while 𝑋𝑒−𝑟𝑇 gives the discounted exercise 

price. When 𝜎𝑟  is increasing, d1 increases due to the +𝜎𝑟
2 in the numerator, while d2 is 

decreasing due to the −𝜎𝑟
2  in then numerator. Hence,  𝑁(𝑑1)  increases while 𝑁(𝑑2) 

decreases. Consequently, when  𝜎𝑟  is high, the value of the option is high. Therefore, 

increased volatility implies a higher option price. This makes sense as if the market is 

volatile, there would be a greater chance for the future price to be much higher than the 

strike price, as well as being much lower. A higher price would allow no risk-free profit.  

1.1.1 Assumptions of the Black-Scholes Formula 

The Black-Scholes formula assumes that the underlying prices of an asset follow 

geometric Brownian motion. This means that returns follow a normal distribution and that 

future price changes are independent of past price movements (Ross, 2006). The latter 

premise implies that future returns are uncorrelated to past returns, however, the validity 
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of it is often disputed. Investors in agreement argue that it is a consequence of the 

Efficient-Market Hypothesis (EMH) which states that prices reflect all available 

information and “no amount of analysis can give an investor an edge over other investors” 

(Thune, 2019). Those in disagreement argue that information is absorbed by investors at 

different rates, and thus, future price changes will tend to follow past price movements 

(Ross, 2006).  

As seen, 𝜎𝑟  is a crucial parameter of the Black-Scholes formula in which the assumptions 

explained are contained. Incoherence with the assumptions may therefore, return an 

option price allowing arbitrage, hence dissatisfying its initial requirements. The 

remaining report is divided into exploring the two assumptions concerning returns:  

1) Normality 

2) Independence 

1.2 THE NORMAL DISTRIBUTION 

The normal distribution is recognised for its presence in many natural phenomena. The 

perfect symmetry around the mean characterises the distribution. Its probability density 

function (PDF) has two parameters: mean (µ) and standard deviation (σ) and is given by:  

𝑃(𝑥;  µ, 𝜎)   =
1

𝜎√2𝜋 
𝑒

−
(𝑥−µ)2

2σ2  

In a standard normal distribution (s.n.d), µ is 0 and 𝜎 is 1.  

One property of the normal distribution that is used onwards is the 68-95-99.7 rule which 

gives the approximate probability of occurrence for three different intervals (Table 1). 

 



   

5 
 

Data intervals Probability of Occurrence (%) 

±1 𝜎 𝑜𝑓 µ 68 

±1.96 𝜎 𝑜𝑓 µ 95 

±3 𝜎 𝑜𝑓 µ 99.7 

Table 1: 68-95-99.7 rule 

1.3 POWER MARKET DATA SAMPLE 

To test if the power market meets the assumptions of the Black-Scholes formula, a data 

sample of 365 consecutive daily spot-prices/MWh of Oslo, Norway, 2018, was taken from 

Nord Pool Historical Market Data (Appendix A). Some considerations of the data include 

that daily-prices should be chosen over hourly-prices to avoid cyclic trends that arise due 

to the influence of cyclical demand patterns (Simonsen, 2004). The choice of year, 2018, 

is assumed to represent the population of power prices in Norway. The data size of 365 

is also a sufficiently large sample size which is beneficial when conducting the normality 

tests ahead. 

1.3.1 Time-series of Power Prices 

Financial prices can be modelled by a discrete time-series, a set of observations measured 

at equidistant time (t) intervals. This means that for any day, n, ∆𝑡 = 𝑡𝑛 − 𝑡𝑛−1 , is 

constant.  

Figure 1 shows the data sample presented as a time-series, where no clear trend is seen.  
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Figure 1: Time-series of Oslo, 2018 spot-prices 

Before testing the assumptions, the forms of returns are explored.  

2 RETURNS 

Power prices are affected by many underlying factors, for instance, weather. The 

correlation between consecutive prices from the presence of trend and seasonality is 

often removed when working further with a time-series to transform it into stationary, 

leaving only the short-run fluctuations. In a stationary time-series, properties such as 

mean and variance (𝜎2) are constant. Such statistical estimators of future behaviour are 

only useful if the series is stationary (Nau, n.d). 

Differencing, 𝑑(𝑛), a transformation to make the price series stationary, yields the 

change in consecutive prices and is given by: 

𝑑(𝑛) = 𝑝(𝑛) − 𝑝(𝑛 − 1), 

where 𝑛  is a day, 𝑝(𝑛)  is the corresponding end-of-day price, and the number of 

differenced values is n-1.  
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Concerning the Black-Scholes formula, returns are more effective measures of change as 

they comprise of a relative change in the value of an asset and the standard deviation of 

returns is an important parameter of the formula. Differencing does not reflect how 

significant the change is relative to the original price. Section 2.1 and 2.2 discusses the 

two forms of returns. 

2.1 ARITHMETIC RETURNS (AR) 

AR (𝑟𝑡) is the ratio of the difference, 𝑑(𝑛), to the reference value, 𝑝(𝑛 − 1). 

𝑟𝑡 =  
𝑑(𝑛)

𝑝(𝑛 − 1)
=

𝑝(𝑛) − 𝑝(𝑛 − 1)

𝑝(𝑛 − 1)
=

∆𝑝(𝑛)

𝑝(𝑛 − 1)
 

Therefore, a change in price ∆𝑝(𝑛), when 𝑝(𝑛 − 1) is small, would result in a greater 

percentage return in comparison to if 𝑝(𝑛 − 1) is large. 

2.2 GEOMETRIC RETURNS (GR) 

GR (𝑅𝑡) is the difference in the logarithms of consecutive prices. Let, 

𝐿(𝑛) = ln(𝑝(𝑛)), 

and, 

𝑅𝑡 = 𝐿(𝑛) − 𝐿(𝑛 − 1) 

𝑅𝑡 = ln(𝑝(𝑛)) − ln(𝑝(𝑛 − 1)) 

∴                      𝑅𝑡 = ln (
𝑝(𝑛)

𝑝(𝑛−1)
) 

Hence, a geometric return is the natural logarithm of the ratio of the price at day n to the 

price at day n-1. 
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2.3 COMPARING ARITHMETIC RETURNS WITH GEOMETRIC RETURNS 

Both return forms are often used in financial analysis, and it was observed throughout 

several data values, that AR were approximately equal to GR. For instance, the arithmetic 

return of January 4th to January 5th is 

=  
304.33 − 311.56

311.56
 

=
−7.23

311.56
 

= −0.0232 (4 𝑑. 𝑝) 

And the geometric return is 

= ln (
304.33

311.56
) 

= −0.0234 (4 𝑑. 𝑝) 

Here, the difference between GR and AR was only −0.0234 − (−0.0232) = 0.0002, 

which seemed negligible. 

It was, therefore, difficult to understand which return to use over the other. To further 

evaluate the difference, a Maclaurin series expansion was done on the GR, which is the 

Taylor series expansion centred about 0. This expands the function into an infinite sum 

of certain polynomials given by its higher derivatives that would approximate the GR in 

the proximity of 0. The first step was to rewrite GR as a function of AR.  

 𝑠𝑖𝑛𝑐𝑒, 𝑅𝑡 = ln (
𝑝(𝑛)

𝑝(𝑛 − 1)
) 

  𝑅𝑡 = ln (
𝑝(𝑛) − 𝑝(𝑛 − 1)

𝑝(𝑛 − 1)
+  

𝑝(𝑛 − 1)

𝑝(𝑛 − 1)
) 

𝑅𝑡 = ln (
𝑝(𝑛) − 𝑝(𝑛 − 1)

𝑝(𝑛 − 1)
+ 1) 

𝑅𝑡 = ln(𝑟𝑡 + 1) 
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The function can be expressed using the Maclaurin power series expansion theorem:  

∑ 𝑐𝑛𝑥𝑛,   𝑤ℎ𝑒𝑟𝑒 𝑐𝑛 =  
𝑓(𝑛)(0)

𝑛!

∞

𝑛=0

 

Thus, the term 𝑐𝑛 is given by the nth derivatives of a function 𝑓(𝑥) at x=0, divided by the 

nth factorial.  

In this case, 𝑥 is AR and 𝑓(𝑥) is GR, 

Hence, 𝑓(𝑥) = ln(𝑥 + 1) 

When n=0: 

𝑓(0) = ln(1 + 0) = 0 

𝑐0 = 0 

When n=1: 

𝑓′(𝑥) =
1

1 + 𝑥
 

𝑓′(0) = 1  

𝑐0 =
1

1!
= 1 

When n = 2:  

𝑓′′(𝑥) =
0(1 + 𝑥) − 1(2)

(1 + 𝑥)2
 

𝑓′′(𝑥) =
−1

(1 + 𝑥)2
 

 𝑓′′(0) =  −
1

1
=  −1 

𝐶2 =  −
1

2!
 

𝐶2 =  −
1

2
 

When n = 3: 

𝑓′′′(𝑥) =
0 + 1(2)(1 + 𝑥)

(1 + 𝑥)4
 

𝑓′′′(𝑥) =
2(1 + 𝑥)

(1 + 𝑥)4
=

2

(1 + 𝑥)3
 

𝑓′′′(0) = 2 

𝐶3 =
2

3!
=

2

6
=

1

3
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When n = 4:  

𝑓4(𝑥) =
0 − (2)(3)(1 + 𝑥)2

(1 + 𝑥)6
  

𝑓4(𝑥) =
−6(1 + 𝑥)2

(1 + 𝑥)6
 

𝑓4(𝑥) =
−6

(1 + 𝑥)4
 

𝑓4(0) = −6 

𝐶4 =
−6

4!
 

𝐶4 =
−6

24
 

𝐶4 =  −
1

4
 

Thus,  

𝑓(𝑥) = ln(1 + 𝑥) =  𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + 𝐶3𝑥3 + 𝐶4 𝑥
4 + ⋯ + 𝐶𝑛𝑥𝑛 

𝑓(𝑥) =  ln(1 + 𝑥) = 0 + 𝑥 −
1

2
𝑥2 +

1

3
𝑥3 −

1

4
𝑥4 + ⋯ 

When |𝑥| ≪ 1, the first-order term of 𝑓(𝑥), 𝑥, dominates, as |𝑥𝑘| → 0, for 𝑘 = 2,3,4 … 

Thus, when  𝑟𝑡 ≪ 1,    

ln (
𝑝(𝑛)

𝑝(𝑛 − 1)
) ≈

𝑝(𝑛) − 𝑝(𝑛 − 1)

𝑝(𝑛 − 1)
, 

And so,  

𝑅𝑡 ≈  𝑟𝑡 

Hence, GR can be approximated by AR, when the market is less volatile.  
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To visualise the difference and to check how close AR and GR are, Rt was plotted against 

rt in a scatterplot and the function 𝑦 = 𝑥 is superimposed on the points. Points lying on 

the line indicate where Rt is equal to rt (Figure 2).  

       

Figure 2: Geometric returns vs. Arithmetic returns 

It is seen that when |𝑟𝑡| ≪ 1, the deviation from the straight line is minimal but increases 

as |𝑟𝑡| increases. 

Assuming the returns follow a normal distribution, a process called standardizing is used. 

This sets normal variables at the same scale and returns a z-score for each data-value 𝑥  

that represents the number of standard deviations 𝑥 lies from the mean. The z-score of 

the variable 𝑥 is given by: 

𝑧 =
𝑥 − 𝜇

𝜎
 

Where, 𝜇 is the mean and 𝜎 is the standard deviation.  
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From the data, 𝜇𝑟𝑡
≈ 𝜇𝑅𝑡

≈ 0, 𝜎𝑟𝑡
 = 0.1387 (4 s.f.). 95% of AR lies between ±1.96𝜎 of 𝜇𝑟𝑡

 

(Section 1.2) which is 

=  1.96 × (0.1387) of 0 

= ±0.272 of 0 

𝜎𝑅𝑡
 = 0.1268 (4 s.f.). Hence, 95% of GR lies between 

±1.96 × 0.127 of 0 

= ±0.250 of 0 

As seen in Fig. 2, when 𝑟𝑡 ∈ [−0.2, 0.2], 𝑟𝑡  ≅  𝑅𝑡.  

The z-score at 0.2 for 𝑟𝑡 =
0.2−0

0.139
= 1.44 

The standard normal probability at z =1.44 is 92.51% 

z-score at −0.2 for 𝑟𝑡 =  
−0.2−0

0.139
= −1.44 

The standard normal probability at z = -1.44 is 7.49% 

Therefore, the probability of obtaining a value of AR in the range -0.2 to 0.2 is  

92.51% − 7.49% =  85.02% 

Thus, 85.02% of AR are approximately equal to the GR. In general, the difference between 

AR and GR is negligible (Benth, 2000). 

Due to the practicality of percentage values in data analysis, AR was selected to test 

normality. 
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3 NORMALITY TESTING OF ARITHMETIC RETURNS (AR) 

To get an extensive set of results, normality was tested both qualitatively and 

quantitatively. The methods used for normality testing are given below. 

1. Qualitative testing  

1. Visual evaluation of density histogram 

2. Normal Quantile-Quantile (Q-Q) Plot 

2. Quantitative testing through hypothesis testing 

1. Kolmogorov-Smirnov test 

2. Anderson-Darling test 

3. Shapiro-Wilk test 

3.1 QUALITATIVE TESTING  

3.1.1 Visual Evaluation of Density Histogram 

A density histogram is an estimation of the PDF of a continuous variable, which sorts data 

into equal-sized bins and the height of the vertical columns shows the density for each 

bin. The area under a density histogram must always be 1, so density is found by: 

𝑐

𝑛𝑤
 

Where c is the count for each bin, n is the total number of observations, w is interval 

width. Therefore, the density for a bin may be greater than 1. 

Choosing a good number of bins is important to create an interpretable density 

histogram. The greater the number of bins, the smaller the interval, meaning that the 

density for each bin is high (Figure 3). The smaller the number of bins, the greater the 

interval, meaning that the relative frequency for each bin will be higher, but the interval 

will would also be greater. Hence, the density will be lower (Figure 4). 
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Figure 3: Histogram of AR with 320 bins 

 

 

Figure 4: Histogram of AR with 7 bins 
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With experimentation, 40 number of bins were found to produce a good histogram. A 

normal PDF was superimposed over the histogram, given by the parameters found from 

the data: 

𝑃(𝑥;  0.01, 0.14)   =
1

0.01√2𝜋 
𝑒

−
(𝑥−0.01)2

2×0.142  

 

Figure 5: Histogram of Arithmetic returns with 40 bins  

The histogram of AR (Fig. 5) seems unimodal, a characteristic of the normal distribution, 

but leptokurtic. This means that the steepness of the peak is beyond the normal PDF and 

is more concentrated about the mean. It seems positively skewed, which does not make 

sense in a power market unless the economy is expanding. Positive returns should be as 

frequent as negative returns in a large dataset. The skew may be explained by the 

presence of positive outliers. 
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3.1.2 The Normal Q-Q Plot 

A normal Q-Q plot is a visual tool that helps to assess whether a data set comes from a 

normal distribution by creating a scatter plot where quantiles of the first data set are 

plotted against the corresponding quantile of the standard normal distribution (s.n.d.). A 

quantile is a value that marks where the sample covers that fraction of data. The first data 

set is typically the data being assessed, while the second is the z-scores occupying the 

same quantile. For instance, the 0.5th quantile of the data sample is plotted against the 

0.5th quantile of the s.n.d. The 0.5th quantile corresponds to the median. As the s.n.d has 

its mean and median centred at 0, the median of the data is plotted against 0. 

The steps by which a Q-Q plot is produced is shown below:  

1. The observed values are arranged in increasing order.  

2. The quantile that each ordered value occupies is recorded 

3. From a normal distribution, find the z-scores that occupy the same quantile 

4. Plot each ordered value against the corresponding z-score/theoretical quantile.  

If the data sample comes from a normal distribution, the points should follow a linear 

trend. This is because the smallest data value is paired up with the smallest data value 

expected from an s.n.d of the same size and this would be done for each data-value. If the 

quantiles of two s.n.d are plotted against each other, it would form a 45-degree angled 

straight line. As any normal distribution is just a linear transformation of an s.n.d, there 

would only be a change in the slope of the line.  However, systematic deviations from 

linearity reflect that the data is sampled from a non-normal distribution.  

To test this, Simple Random Samples (SRS) of equal size were pulled from a normal 

distribution using Python and a linear regression line was passed through the data points 

(Figure 6).  
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It is seen that the Q-Q plot of two normal SRSs forms a straight line with only a few minor 

deviations. 

 

Figure 6:Q-Q Plot for two normal SRSs 

A Q-Q plot for AR was then created (Figure 7). 

 

Figure 7: Q-Q plot of Arithmetic Returns 
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Systematic deviations from the line towards positively and negatively large quantiles can 

be seen. Dissecting the Q-Q plot using a guide (Figure 8) indicates that the distribution is 

rather heavy-tailed.  

 

Figure 8: Q-Q discerning guide (Kross, 2016) 

The guide shows a normal PDF overlaid on a heavy-tailed histogram. It can be discerned 

that the frequency of occurrence towards the extremes is larger than expected by a 

normal distribution.   This means that the first sampled quantile is smaller than the first 

theoretical quantile and the last sampled quantile is greater than the last theoretical 

quantile. This leads to a systematic deviation from linearity towards the tails in the plot. 

When returns are assumed to be normal when they are actually heavy-tailed, it could lead 

to a momentous underestimation of risk. This normality assumption has had massive 

dangers in other financial models such as the Value-at-Risk (VaR) technique. This 

assumption has previously made banks too sanguine, failing to forecast the 2008, U.S. 

housing crisis, and thus leading to negative economic spiralling (Alloway, 2012).  
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3.2 HYPOTHESIS TESTING 

Hypothesis testing using p-values quantify deviations from the normal distribution and 

are known as goodness-of-fit tests. Before the test, the null hypothesis (H0) and the 

alternative hypothesis (HA) were decided. The null hypothesis is to be tested and aimed 

to be disproved. If the null hypothesis is disproved, the alternate hypothesis is accepted. 

A p-value provides information regarding how much evidence is in support of the null 

hypothesis and helps determine the significance of the results. 

3.2.1 Declaration of Hypotheses  

H0: The data-set is normally distributed 

HA: The data-set is not normally distributed 

The p-value is typically compared against the threshold α = 0.05. 

▪ If p ⩽ α: reject H0, accept HA  

▪ If p ⩾ α: Fail to reject H0 

3.2.2 Choice of Normality Tests 

There are several techniques to analyse the goodness-of-fit of a distribution of a 

population, given a sample. Each goodness-of-fit test returns a test statistic that is 

calculated differently from other tests. It is then compared against a null distribution to 

return a p-value, where the null distribution is test-specific. Therefore, a p-value is, 

assuming the null hypothesis is true, the probability that a value is found to be as extreme 

or more extreme than the test statistic found, by evaluating against the null distribution. 

The Kolmogorov-Smirnov, Anderson-Darling and Shapiro-Wilk tests were used, which 

are ranked as the most powerful (Razali and Yap, 2011). These tests were chosen to 

achieve higher accuracy in concluding the goodness-of-fit. 
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A test may either be one-tailed or two-tailed. A one-tailed test only gives the probability 

of a deviation from the null-hypothesis, in one direction (positive or negative). A two-

tailed test is concerned with both directions, therefore returning a greater p-value. The 

goodness-of-fit tests conducted were two-tailed, as both positive and negative deviation 

from normality must be considered. The tests were conducted using Python. 

3.2.3 Kolmogorov-Smirnov Test (K-S) 

A Kolmogorov-Smirnov test is used to compare a sample with a reference distribution, in 

this case, it was the normal distribution. The sample is first standardized and then its 

empirical cumulative distribution function (EDF) is plotted together with the normal 

CDF. The supremum deviation, the least upper-bound, between the two functions is 

quantified in terms test statistic D, which is given by: 

𝐷 =  sup
𝑥

|𝑓𝑛(𝑥) − 𝑓(𝑥)| 

Where fn(x) is the EDF and f(x) is the CDF.  

The D test statistic is compared against the Kolmogorov null distribution to return a p-

value. In Table 2, it is seen that the p-value obtained from this test was 2.731 × 10−54. 

This p-value is ≪  𝛼, and the H0 can be rejected. 

It is important to note, however, that the K-S test calculates its p-value only using the 

supremum deviation between the CDF and EDF but does not account for where this 

deviation took place, and what significance it may hold. For instance, it does not add 

weight to the distribution tails. As seen in the Q-Q plot, the data clearly has tails heavier 

than the normal distribution, meaning that a deviation in the tails of the distributions 

should have a higher significance. Also, the supremum deviation may be the result of an 

outlier that does not represent the sample data wholly. 
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3.2.4 Anderson Darling Test (A-D) 

The Anderson-Darling test is a modified version of the K-S test and is more powerful as it 

adds weight to the tails of the distribution. This is especially important, seeing the heavy-

tailed nature of the returns on the Q-Q plot. Deviations in tails should be weighted, as 

those indicate larger financial returns than that expected by a normal distribution. A 

feature of the A-D test is that it returns a list of critical values corresponding to the 

significance levels: 15%, 10%, 5%, 2.5% and 1%, along with a test statistic ‘A2’, rather 

than returning a single p-value. If the A2 is greater than the critical values, the null 

hypothesis can be rejected (SciPy, 2019). The test returned five, strong rejections of the 

H0 (Table 2). The test statistic is much larger than all the 5 critical values. 

3.2.5 Shapiro-Wilk Test (S-W) 

Researchers often recommend the Shapiro-Wilk test as the best choice for normality 

testing (Ghasemi and Zahediasl, 2012). This test detects departures from normality 

through skewness and kurtosis. A weakness is that it doesn’t work well on data that has 

identical observations. This should not be a problem for this data, as it was not found to 

have repeated observations.  

The S-W test returned a p-value much smaller than 𝛼, thereby rejecting H0. 

 

Table 2: Results of Hypothesis Testing, AR 

All the tests clearly indicate departure from normality, and the null hypothesis can be 

rejected for AR. 
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4 NORMALITY TESTING OF GEOMETRIC RETURNS (GR) 

Upon further research, it was found that the Black-Scholes formula assumes GR in its 

formula and not AR (Ross, 2006). Although both returns were found to be approximately 

equal, the formal normality-test procedure is conducted on GR to confirm non-normality 

and further, only GR is tested for independence and used to conclude the results. 

4.1 QUALITATIVE TESTING OF DATA  

4.1.1 Visual Evaluation of Histogram 

 

Figure 9: Histogram of geometric returns 

GR also seems leptokurtic (Figure 9). However, there is no visible skew as outliers 

affecting the skew in AR would not have the same effect on skew in GR. This may be 

because GR is a logarithmic transformation of AR which reduces the scale of large values 

resulting in a distribution more symmetric about the mean. 
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4.1.2 Normal Q-Q Plot 

 

Figure 10: Q-Q plot of geometric returns 

This Q-Q plot shows that GR also form a heavy-tailed distribution. The heavy-tailed 

nature is thus consistent in both forms of returns.  

4.2 HYPOTHESIS TESTING 

The Kolmogorov-Smirnov, Shapiro-Wilk and the Anderson-Darling test conducted for the 

results of the hypothesis testing for GR proves to give non-normal results as the p-value 

is much smaller than the threshold and A2 is greater than the critical values (Table 3). 
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Table 3: Results of Hypothesis Testing, GR 

It can, therefore, be concluded that the returns for the power market data are strongly non-

normal and do not abide by the first assumption of the Black-Scholes formula. 

5 INDEPENDENCE OF RETURNS 

A major premise behind the Black-Scholes formula is that returns follow geometric 

Brownian motion. Future returns should be independent of past returns, and therefore 

uncorrelated. If this is true, GR will be independent, identically distributed (i.i.d.) 

variables. To assess this, a sample autocorrelation function was created. 

Correlation is a function of covariance, where covariance measures the direction of the 

relationship between two variables X and Y, while correlation measures its strength. 
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5.1 COVARIANCE 

Covariance of any two variables X and Y, is given by: 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝑋̅)(𝑌 − 𝑌̅)] 

Where, 

 𝑋̅ = 𝐸(𝑋), the expected value of X 

And, 

 𝑌̅ = 𝐸(𝑌), the expected value of Y 

In a positive relationship, when 𝑋 <  𝑋̅ , it follows that 𝑌 <  𝑌̅, and the product is positive, 

and when  𝑋 >  𝑋̅  it follows that 𝑌 >  𝑌̅, and the product is again positive. Hence, the 

covariance of a positive relationship is positive.  

In a negative relationship, when 𝑋 <  𝑋̅, it follows that 𝑌 > 𝑌̅ and when 𝑋 >  𝑋̅, it follows 

that 𝑌 <  𝑌̅. Thus, the product and the covariance are negative. 

5.2 PEARSON’S CORRELATION COEFFICIENT 

Pearson’s correlation coefficient of X and Y is given by: 

𝐶𝑜𝑟(𝑋, 𝑌) =  
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋 ∙ 𝜎𝑌
 

𝐶𝑜𝑟(𝑋, 𝑌) =  
𝐸[(𝑋 − 𝑋̅)(𝑌 − 𝑌̅)]

𝜎𝑋 ∙ 𝜎𝑌
 

Correlation ranges between -1 and +1, where -1 indicates a strong negative correlation, 

and +1 indicates a strong positive correlation. A correlation of 0, indicates no correlation. 
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5.3 AUTOCORRELATION OF RETURNS 

Autocorrelation measures the correlation of a series with a delayed copy of itself and can 

be measured at various lag lengths. Independent returns would imply that there is 

insignificant autocorrelation in its time series (Section 1.1.1). The measurement of 

significance is explored further ahead. 

5.3.1 Correlation of Consecutive Returns  

To measure the dependency between consecutive returns, the returns were shifted by a 

lag of 1, using a circular-shift function. The two variables are denoted as: 

Rt : GR 

Rt+1 :  GR shifted by a lag of 1 

Hence, the correlation between 𝑅𝑡 and 𝑅𝑡+1 is given by: 

𝐶𝑜𝑟(𝑅𝑡, 𝑅𝑡+1) =  
𝐸[(𝑅𝑡 − 𝜇)(𝑅𝑡+1 − 𝜇)]

𝜎𝑅𝑡
2

 

As both variables are from the same series, the mean and standard deviation is the same 

for both. 

In Figure 11, Rt+1  is plotted against Rt  and the line of regression is laid over the points. 
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Figure 11: Autocorrelation of GR of lag 1 

Visually discerned, there is a weak, but evident, correlation between Rt  and Rt+1. Pearson’s 

correlation coefficient was calculated to be -0.245. The presence of correlation makes 

sense due to the phenomenon of volatility clustering which states that large changes in 

price tend to cluster together (Cont, 2005), but opposes the Efficient Market Hypothesis. 

To test for geometric Brownian motion, this correlation coefficient must be compared 

against a certain threshold-value to either reject or accept the assumption. For this 

purpose, a sample autocorrelation test was conducted. 

5.3.2 The Sample Autocorrelation Function 

The sample autocorrelation function measures the correlation between the data at 

increasing lags (h). 

Hence, the variable shifted by lag (h) can be denoted by Rt+h and the autocorrelation 

function can be defined as: 

𝐶𝑜𝑟(𝑅𝑡, 𝑅𝑡+ℎ) =  
𝐸[(𝑅𝑡 − 𝜇)(𝑅𝑡+ℎ − 𝜇)]

𝜎𝑅𝑡
2
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The correlation was measured up to 40 lags to capture any memory in the data as 

financial markets may see dependencies in, for example, every 5th day which may not be 

evident in a lag of 1.  

ℎ = 0, 1, … , 40  

If GR are normal i.i.d., the corresponding sample autocorrelations would also be normal 

i.i.d (Brockwell and Davis) with a mean 0, and variance given by: 

𝑠2 =  
1

𝑛
 

Where 𝑠 is the standard deviation of the sample autocorrelations, and n is the sample size 

(Brockwell and Davis). The sample size of returns is 364. Hence, 

𝑠2 =  
1

364
 

𝑠 =
1

√364
 

Out of the sample autocorrelations, 95% should fall between the confidence intervals: 

±1.96𝑠  

=  ±
1.96

√364
  

=  ±0.1027 (4 𝑑. 𝑝. ) 

It is therefore expected that 5% of the sample autocorrelations will fall outside the 

bounds. As there are 40 lag-lengths, the number of sample autocorrelations expected to 

fall outside the interval, if returns are normal i.i.d. is, 

=  40 × 0.05  

= 2 
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If any more observations fall outsides the bounds, this would be statistically significant 

and the premise can be rejected. Figure 12 shows the sample autocorrelation function 

generated using MATLAB where the red marks represent the lag lengths at which the 

autocorrelation is beyond the bounds. 

 

Figure 12: Sample autocorrelations for GR up to 40 lags 

Figure 12 shows 5 sample autocorrelations falling outside the bonds, marked in red. As 

this number is greater than 2, it is a statistically significant number and it is possible to 

conclude that GR have a sufficiently strong correlation. However, correlation does not 

imply causation, and some correlation may be coincidental. It can therefore only be 

concluded with 95% confidence that the returns are not normal i.i.d. and consequently, 

do not follow geometric Brownian motion. The second assumption of the Black-Scholes 

formula is thus, not satisfied. 
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6 CONCLUSION 

This report has established that the Oslo, 2018 power prices do not satisfy the 

assumptions of normality and independence of the widely-used Black-Scholes option-

pricing formula. Through qualitative and quantitative tests, it was found that both 

arithmetic and geometric returns are significantly non-normal and heavy-tailed and will 

continually cause an underestimation of risk in financial modelling. The power prices 

were shown to not follow geometric Brownian motion by applying an autocorrelation 

test of 95% confidence.  

The year, 2018, could be a limitation of the test as it may be abnormal in terms of its 

behaviour, however, further information regarding this could not be found. Perhaps by 

the central-limit theorem, increasing the sample size to multiple years would produce a 

sample better representative of the population of power prices in Norway. However, 

doing this could introduce seasonality which would require treatment. Additional 

normality tests can also be conducted to confirm the results which strongly reject 

normality.  

The findings are significant as they show that the power market due not adhere to the 

assumptions of the Black-Scholes formula, meaning that the option price derived from 

the formula will not be risk-neutral or eliminated of the opportunity of arbitrage. 

Although both assumptions are not met, the Black-Scholes formula may still be used, but 

it might not fulfil the initial requirements of risk-neutral valuation. With further 

investigation, more samples from Norway and other countries can be tested to see if they 

cohere with this conclusion. Additionally, explore other option-pricing models that look 

beyond the assumptions of the Black-Scholes formula and accommodate the heavy-tailed 

nature of returns. 
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8 APPENDIX 

A. Spot-price power data for Oslo, 2018 is shown on the next page and is taken 

from Nordpool historical market data:  

URL: https://www.nordpoolgroup.com/historical-market-data/ 

 

 

 

 

 

 

 

 

https://www.nordpoolgroup.com/historical-market-data/
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Date Price Date Price Date Price Date Price Date Price
01/01/2018 255,16 15/03/2018 436,63 27/05/2018 360,56 08/08/2018 483,95 20/10/2018 385,11

02/01/2018 311,53 16/03/2018 394,64 28/05/2018 378,79 09/08/2018 489,32 21/10/2018 384,11

03/01/2018 281,40 17/03/2018 361,16 29/05/2018 393,88 10/08/2018 452,57 22/10/2018 357,93

04/01/2018 311,56 18/03/2018 356,81 30/05/2018 392,79 11/08/2018 450,28 23/10/2018 337,31

05/01/2018 304,33 19/03/2018 405,13 31/05/2018 404,71 12/08/2018 434,44 24/10/2018 398,99

06/01/2018 302,67 20/03/2018 415,68 01/06/2018 408,77 13/08/2018 471,07 25/10/2018 418,08

07/01/2018 276,79 21/03/2018 401,32 02/06/2018 399,25 14/08/2018 475,24 26/10/2018 446,17

08/01/2018 314,34 22/03/2018 390,28 03/06/2018 403,09 15/08/2018 477,05 27/10/2018 420,47

09/01/2018 293,95 23/03/2018 443,10 04/06/2018 405,87 16/08/2018 479,58 28/10/2018 419,14

10/01/2018 385,96 24/03/2018 385,80 05/06/2018 430,16 17/08/2018 478,94 29/10/2018 424,91

11/01/2018 415,54 25/03/2018 381,21 06/06/2018 440,42 18/08/2018 460,25 30/10/2018 408,42

12/01/2018 344,63 26/03/2018 456,67 07/06/2018 448,55 19/08/2018 442,17 31/10/2018 407,80

13/01/2018 301,07 27/03/2018 440,02 08/06/2018 455,99 20/08/2018 479,54 01/11/2018 422,70

14/01/2018 288,12 28/03/2018 442,62 09/06/2018 436,71 21/08/2018 488,53 02/11/2018 421,85

15/01/2018 286,27 29/03/2018 394,26 10/06/2018 437,03 22/08/2018 481,30 03/11/2018 415,87

16/01/2018 310,41 30/03/2018 397,01 11/06/2018 441,41 23/08/2018 485,82 04/11/2018 415,04

17/01/2018 324,49 31/03/2018 388,10 12/06/2018 439,20 24/08/2018 486,31 05/11/2018 429,92

18/01/2018 344,09 01/04/2018 380,86 13/06/2018 441,82 25/08/2018 490,41 06/11/2018 449,71

19/01/2018 382,57 02/04/2018 387,03 14/06/2018 436,35 26/08/2018 490,88 07/11/2018 435,26

20/01/2018 322,28 03/04/2018 422,05 15/06/2018 422,03 27/08/2018 501,10 08/11/2018 442,17

21/01/2018 319,07 04/04/2018 409,38 16/06/2018 411,29 28/08/2018 536,78 09/11/2018 437,04

22/01/2018 380,07 05/04/2018 413,66 17/06/2018 404,24 29/08/2018 545,74 10/11/2018 407,68

23/01/2018 327,63 06/04/2018 391,13 18/06/2018 415,08 30/08/2018 560,20 11/11/2018 385,98

24/01/2018 278,06 07/04/2018 377,75 19/06/2018 398,17 31/08/2018 557,67 12/11/2018 429,64

25/01/2018 285,49 08/04/2018 379,70 20/06/2018 407,45 01/09/2018 556,66 13/11/2018 454,69

26/01/2018 310,60 09/04/2018 415,23 21/06/2018 401,02 02/09/2018 549,15 14/11/2018 466,22

27/01/2018 297,37 10/04/2018 390,89 22/06/2018 390,23 03/09/2018 565,97 15/11/2018 452,63

28/01/2018 269,01 11/04/2018 395,10 23/06/2018 385,64 04/09/2018 562,07 16/11/2018 449,95

29/01/2018 283,19 12/04/2018 388,13 24/06/2018 400,70 05/09/2018 570,78 17/11/2018 441,26

30/01/2018 307,93 13/04/2018 380,28 25/06/2018 427,34 06/09/2018 566,91 18/11/2018 453,69

31/01/2018 285,08 14/04/2018 375,21 26/06/2018 435,62 07/09/2018 558,76 19/11/2018 467,60

01/02/2018 294,77 15/04/2018 382,36 27/06/2018 442,63 08/09/2018 532,56 20/11/2018 459,77

02/02/2018 340,00 16/04/2018 425,28 28/06/2018 441,95 09/09/2018 522,25 21/11/2018 489,01

03/02/2018 328,79 17/04/2018 402,12 29/06/2018 438,71 10/09/2018 539,53 22/11/2018 508,03

04/02/2018 323,11 18/04/2018 401,41 30/06/2018 439,84 11/09/2018 506,61 23/11/2018 508,06

05/02/2018 433,82 19/04/2018 381,70 01/07/2018 434,76 12/09/2018 505,99 24/11/2018 476,72

06/02/2018 456,93 20/04/2018 349,96 02/07/2018 480,36 13/09/2018 516,90 25/11/2018 480,70

07/02/2018 439,13 21/04/2018 305,16 03/07/2018 489,05 14/09/2018 509,63 26/11/2018 644,00

08/02/2018 384,45 22/04/2018 336,60 04/07/2018 507,95 15/09/2018 467,92 27/11/2018 621,28

09/02/2018 312,30 23/04/2018 335,97 05/07/2018 519,82 16/09/2018 431,72 28/11/2018 494,29

10/02/2018 316,31 24/04/2018 336,34 06/07/2018 479,91 17/09/2018 473,19 29/11/2018 454,55

11/02/2018 289,82 25/04/2018 355,46 07/07/2018 454,23 18/09/2018 432,41 30/11/2018 449,85

12/02/2018 306,66 26/04/2018 353,73 08/07/2018 463,85 19/09/2018 416,12 01/12/2018 449,73

13/02/2018 363,41 27/04/2018 358,34 09/07/2018 483,57 20/09/2018 403,08 02/12/2018 437,89

14/02/2018 349,22 28/04/2018 344,91 10/07/2018 504,02 21/09/2018 349,90 03/12/2018 459,25

15/02/2018 317,77 29/04/2018 338,78 11/07/2018 503,73 22/09/2018 206,37 04/12/2018 449,77

16/02/2018 351,11 30/04/2018 306,07 12/07/2018 507,91 23/09/2018 318,20 05/12/2018 493,57

17/02/2018 368,61 01/05/2018 290,43 13/07/2018 505,14 24/09/2018 325,54 06/12/2018 503,22

18/02/2018 348,80 02/05/2018 356,25 14/07/2018 490,54 25/09/2018 373,73 07/12/2018 467,69

19/02/2018 397,98 03/05/2018 353,53 15/07/2018 489,37 26/09/2018 282,52 08/12/2018 441,25

20/02/2018 431,84 04/05/2018 356,28 16/07/2018 514,63 27/09/2018 327,01 09/12/2018 437,10

21/02/2018 411,29 05/05/2018 310,12 17/07/2018 505,15 28/09/2018 371,90 10/12/2018 462,30

22/02/2018 426,72 06/05/2018 228,51 18/07/2018 493,26 29/09/2018 362,18 11/12/2018 486,76

23/02/2018 406,86 07/05/2018 298,42 19/07/2018 499,83 30/09/2018 319,82 12/12/2018 589,49

24/02/2018 368,83 08/05/2018 269,00 20/07/2018 518,89 01/10/2018 429,12 13/12/2018 566,59

25/02/2018 371,77 09/05/2018 228,85 21/07/2018 505,89 02/10/2018 436,24 14/12/2018 576,46

26/02/2018 440,44 10/05/2018 163,31 22/07/2018 504,16 03/10/2018 424,56 15/12/2018 506,78

27/02/2018 394,08 11/05/2018 252,76 23/07/2018 526,63 04/10/2018 450,67 16/12/2018 486,94

28/02/2018 396,02 12/05/2018 291,07 24/07/2018 538,21 05/10/2018 436,78 17/12/2018 643,25

01/03/2018 892,10 13/05/2018 180,98 25/07/2018 527,73 06/10/2018 442,71 18/12/2018 581,49

02/03/2018 428,34 14/05/2018 308,64 26/07/2018 517,90 07/10/2018 440,77 19/12/2018 525,67

03/03/2018 401,84 15/05/2018 334,31 27/07/2018 508,18 08/10/2018 439,64 20/12/2018 529,84

04/03/2018 393,98 16/05/2018 333,88 28/07/2018 483,03 09/10/2018 415,12 21/12/2018 517,21

05/03/2018 500,26 17/05/2018 281,27 29/07/2018 479,31 10/10/2018 415,67 22/12/2018 512,43

06/03/2018 467,49 18/05/2018 301,65 30/07/2018 510,26 11/10/2018 387,11 23/12/2018 531,78

07/03/2018 453,10 19/05/2018 335,67 31/07/2018 513,69 12/10/2018 399,51 24/12/2018 510,68

08/03/2018 388,74 20/05/2018 242,14 01/08/2018 535,85 13/10/2018 322,11 25/12/2018 501,48

09/03/2018 391,40 21/05/2018 290,03 02/08/2018 550,22 14/10/2018 171,05 26/12/2018 509,40

10/03/2018 358,21 22/05/2018 361,33 03/08/2018 548,74 15/10/2018 322,83 27/12/2018 519,88

11/03/2018 348,57 23/05/2018 376,36 04/08/2018 492,97 16/10/2018 393,92 28/12/2018 533,06

12/03/2018 408,36 24/05/2018 369,03 05/08/2018 473,23 17/10/2018 375,77 29/12/2018 506,73

13/03/2018 404,55 25/05/2018 371,33 06/08/2018 525,67 18/10/2018 382,38 30/12/2018 512,41

14/03/2018 452,53 26/05/2018 369,39 07/08/2018 512,62 19/10/2018 383,09 31/12/2018 497,37

Data was last updated 31-12-2018

Elspot Prices in NOK/M Wh


