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The effect of regularization of the pretraining of the source task on the performance of

“medical-to-medical” transfer learning to train convolutional neural networks across medical

imaging datasets.

Research Question : To what extent can the regularization of the pretraining on the source

task can improve the performance of the model on the target task in “medical-to-medical”

transfer learning from tuberculosis CT-scans to train a convolutional neural network for

COVID-19 CT-scans binary classification ?
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1 . Introduction

Training convolutional neural networks (CNNs) to learn the patterns found in medical scans

for computer-aided diagnosis can benefit medicine tremendously. However, a significant

amount of labeled data is needed for training to perform adequately on unseen data. Labeled

data scarcity prevails in medical applications of machine learning (ML) because of a

multitude of reasons[1], increasing the likelihood of overfitting, the inability of the model to

generalize patterns.[2]

One of the techniques investigated in the literature of computer vision to address data scarcity

is transfer learning (TL).[3] It involves “utilizing knowledge gained while solving one a

source-task and applying it to a different but related problem (target-task)”. “Knowledge'' in

this context refers to the parameters of the neural network (NN) as a mathematical function,

which are the weights and biases for linear operations that the NN function does on the input

to perform a task. This technique is usually applied when the source-task has significantly

more available data compared to the target-task[4]

One of the applications of TL is what was referred to in a paper [5] as a “medical-to-medical”

TL strategy, where the source-task dataset is of the same medical domain of the target task.

Despite the significant similarity between medical imaging datasets of the same domain,

there is a possibility that TL may transfer parameters were learned from the residual noises of

the source task dataset, rather than parameters learned from its more generalized features and

thus limiting the potential of TL across medical imaging datasets. Regularization techniques
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in ML aim to increase the generalizability of trained models, to have a more viable

performance on unseen data. Therefore, regularization of pre-training could significantly

limit the learning of residual noises during pretraining on the source-task dataset, improving

the transferability of generalized features that could be learned from that dataset, which

would, in turn, improve the performance of model on target-task on unseen data as it learned

those generalized features.

In this paper, the effect of regularization of the pretraining of the source-task on the

performance of transfer learning models on target-task across medical imaging datasets is

investigated. For the experiment, the source-task is tuberculosis binary classification, which

is used to fine-tune a model for COVID-19 binary classification, where both tasks share the

same domain of CT-chest scans. The paper explores three of the widely-used techniques for

regularization: dropout, batch normalization (BN), and data augmentation. To what extent

can the regularization of the pretraining on the source task can improve the performance of

the model on the target task in “medical-to-medical” transfer learning from tuberculosis

CT-scans to train a convolutional neural network for COVID-19 CT-scans binary

classification?

Answering this question could contribute to the literature of TL in medical imaging and

computer vision in general, as no study, to the best of my knowledge, has investigated the

effect of regularization of pretraining on the performance of TL. Advancing the performance

of medical imaging by investigating improvements to a technique of significant utility such

as TL can provide a stream of benefits for both medical research and the clinical routine
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2. Background Information and Theory

2.1 Computer vision and pattern recognition

Hand-engineered feature extractors for computer vision tasks were built based on

domain-specific knowledge to select the relevant features needed from a given image and

implement their extractors for a given task[6]. Deep learning introduced an end-to-end

(domain-agnostic) learning approach that capitalizes on training on adequate data to

recognize the relevant features underlying a given dataset to perform a given task. [7] This

approach is promising for medical imaging as meeting the demand for medical-domain

knowledge is non-trivial.[8]

Figure (1): A figure that contrasts the domain-based hand-engineered approach to the domain agonistic

(end-to-end) approach in computer vision engineering
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2.2 Neural networks (NNs) :

A NN consists of stacked layers of units (perceptions) that represent a mathematical

function of the input. It consists of an input layer, several hidden layers, and an output

layer. [9]

2.2.1 Forward propagation: How does a neural network “predict” ? :

The NNs predict in a process called forward propagation. The input is fed into the input layer,

then the neurons apply a linear operation on the data, where the inputs are multiplied by

particular weights and a bias is added. This linear operation is followed by a non-linear

operation (activation function) that aims to introduce non-linearities to the NN. After that,

an output is produced, it becomes the input of the next layer. The input data keeps going

“deeper” in the network until the final layer produces its output, in a process of sequential

linear algebraic operations[10]

Figure (2): A figure that shows how NNs forward-propagates through matrix

multiplication[11]
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2.2.2 Backpropagation: How does a neural network “learn” to “predict”? :

The training of the NNs involves an iterative process of forward propagation and

backpropagation. For each iteration, the network forward-propagates to produce an output.

After that, the output is evaluated by the loss function ℒ, a function of the predicted output

and the labeled output provided in the training dataset that assesses the performance of the

network for a given iteration (The lower ℒ, the better). After calculating the error,

backpropagation takes place. The negative gradient of the loss function ℒ with respect to

each of the parameters is approximated, and each learnable parameter of the network is

updated using gradient descent algorithm (optimizer)[12] so that ℒ is minimized with

respect to the parameters of the network. As the value of the gradient becomes increasingly

small (i.e approaching a local minimum of ℒ ), the model is said to have converged.

Equation (1) represents the basic version of gradient descent , where each parameter of the

network is updated by the product of the negative gradient of the loss function ℒ with respect

to that parameter and a constant called learning rate , a hyperparameter that governs theη

size of the updates.[13][14]

Equation (1): The update rule of the gradient descent algorithm (optimizer)[15]
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2.3 Convolutional neural networks (CNNs)

In CNNs, which achieved significant performance on computer vision tasks[16], low-level

features are extracted by shallower filters, then those low-level ones are abstracted by deeper

filters to detect more complex and higher-level features[17]. Filters represent tensors that hold

a number of weights that extracts features by applying them to the input through convolution

process[18] Consider figure (3) that demonstrates how Sobel-y filter functions as a vertical

edge detection extractor[19]. In CNNs, those weights are learned analogously to the weights

in classical NNs described in 2.2.

Figure (3): The filter has been “slid” over the image, outputting a “feature map” of the “edge” feature in this

given image, where the brightest parts represent the presence of the vertical edges in the input image.

After applying a stack of convolutional processes to the input, the output of those processes is

usually then passed to a set of fully-connected (FC) layers, like the one described in 2.2, for

processing the highly-abstracted feature maps by the filters to produce the output. The typical

architecture of a CNN is demonstrated in Figure (4) below.[20]
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Figure(4): The classical components of a convolutional neural network architecture

Convolution layers: A convolutional layer consists of several filters that extract particular

features by outputting the feature maps of those features. The parameters (weights) of those

filters are learned by CNNs by backpropagation. After convolution is applied, a learnable

bias is added to the produced feature map and then is passed to the activation function that

introduces non-linearity to the model.[21][22]. After applying the activation, the output may be

passed to a pooling layer, which can be thought of as a downsampling layer that preserves

the important features extracted.

Fully-connected (FC) layers: FC layers are the same layers found in classical NNs. FC

layers are often added at the end of a CNN, where they process the high-level and

low-dimensional features extracted and downsampled by stacks of convolutional layers. [23]
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2.4- Overfitting, regularization, and regularization techniques investigated:

Overfitting is a significant issue during training machine learning (ML) models, where

highly-parameterized models fail to generalize features of the datasets, which can be usually

observed in a gap between the superior performance of the overfitted model on the training

dataset, and its poor performance on unseen data. One of the approaches to address this issue

is training on larger datasets or lowering the capacity (i.e number of parameters) of the

model. However, this is not always possible, particularly in medical scenarios with data

scarcity and non-negotiable need for high performance. Regularization, which encompasses

the suite of techniques that aim to improve the generalizability of ML models, is

consequently of significant importance.[24]

2.4.1 Data augmentation:

Data augmentation encompasses a set of techniques that aim to compensate for the

limitedness of a training dataset by increasing it artificially. This is done by creating modified

data from the existing ones. Data augmentation has a regularizing effect, as it increases the

generalizability of the model by introducing variations that the model may have not learned

from the limited training dataset and could be present on unseen data.[25] This paper explores

a limited class of data augmentation techniques, which involve several basic geometric

transformations and contrast variations.
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2.4.2 Dropout :

Dropout is a regularization technique that combines the predictions of a large number of

NNs. This is done by randomly “dropping out” and eliminating some of the perceptions of

the neural network during each training iteration. For instance, if dropout is applied to the

layer of neural network that consists of perceptions with a probability of (𝑥 𝑛 𝑝

hyperparameter of dropout): In each iteration, each unit of layer has the probability of to𝑥 𝑝

be “dropped out ”, where that unit and its corresponding weights are removed from the

network. This technique ultimately leads to training a “thinned” neural network whose

weights are averaged from all of the “noisy and barely-trained” networks that consist of the

surviving perceptions from dropout. Dropout has a regularizing effect, as it prevents

complex co-adaptations between the units of the NN by averaging the parameters that were

influenced by the residual noises learned by each noisy network from each mini-batch during

training, improving NNs generalizability[26]

Figure (5): Demonstration of dropout technique from its paper.
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2.4.3 Batch Normalization (BN) :

BN is a technique that standardizes the inputs of the layers of NNs, which are also outputs

(activations) of the preceding layers. By “standardizing”, the original paper meant subtracting

the mean of the activations of the preceding layers network  and dividing by their standard

deviation for each mini-batch, so that they have a mean of 0 and a standard deviation of 1.

Standardization is done to input data as it has proven to improve the training speed

empirically, but this technique expands this process of standardization to be applied to the

inner layers of the network. Those standardized activations means and standard deviations

values of different batches are averaged by two learnable parameters for each activation: 𝛽

(mean value of the mean of the activation) and 𝛾 (mean value of the standard deviation of the

activation) respectively. After training, those two hyperparameters are used in standardizing

the input data that comes from preceding layers.

This technique has a regularizing effect, given that the two learnable parameters 𝛽 and 𝛾 of

each activation are updated by each mini-batch introduced, where each mini-batch has a

different mean and standard deviation. Similarly to dropout, BN averages the residual noises

from different mini-batches, leading to a better generalization.[27]

2.5 Transfer Learning (TL) :

CNNs have a hierarchical architecture, where the lower-level features extractors are present

in the shallower layers of the CNN.  Lower-level feature extractors can be shared between

classifiers of different tasks.[28] TL aims to transfer some of those feature extractors (filters

weights) from the pre-trained model that it has been trained on the more available data of the

source-task, to the model of the target task, which may not learn those parameters from its
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scarce data. Due to the scarcity of medical data, TL is of significant potential for medical

imaging applications [29]
.

A TL application is a “medical-to-medical” strategy, which involves pretraining a NN on a

medical task of the same domain (i.e tuberculosis and COVID-19 classification share the

same domain as both datasets use chest CT-scans), and then fine-tuning the NN on the

medical target-task. This approach has been implemented in this paper[30] The strategy is

illustrated in Figure (6).

Figure (6): a figure that illustrates the medical-to-medical transfer learning strategy
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Despite the significant overlapping between the features of source-task and the target-task

datasets in medical imaging datasets, it is possible that the source-task model may transfer

some of the residual noises of its training dataset, which could hinder the improvement that

TL can bring, as irrelevant and noised parameters are transferred. Regularization of

pretraining could limit the learning of residual noises of the source-task dataset and improve

the transferability of the more generalized features of the source-task dataset that are likely to

be relevant for the target-task, which would, in turn, improve the performance of TL. To

examine this effect, an experiment has been designed to examine the effect of regularization

of the pretraining for the source-task on the performance of the fine-tuned model on the

target-task with unseen data in TL across medical imaging datasets.
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3. Methodology

3.1 The implementation of networks :

Models with three techniques of regularization (data augmentation, dropout, and BN) and a

baseline model (no regularization) will be trained on the binary classification of tuberculosis

CT-scans (source task). After pretraining, the weights of each pretrained model will be

transferred to the same architecture and each one would be “fine-tuned” on COVID-19

CT-scans binary classification (target task), where just the last 3 FC layers parameters being

updated. This freezing of layers is to avoid catastrophic forgetting[31], where the NN loses

the parameters it has learned from a previous task while learning sequentially. Freezing

shallower layers addresses this by preserving most of the parameters learned from TL from

the source-task (tuberculosis).

After the four models are fine-tuned, their performance will be evaluated against four small

datasets of unseen COVID-19 scans to increase certainty about the relative performance of

the different models to each other. The networks have been implemented in Python 3 using

Google’s “Tensorflow 2”, a framework for training ML models[32]. The experiments were

conducted on Kaggle[33], a platform that offers free cloud-based Nvidia K80[34] GPUs to

compensate for the limitations of the owned hardware. GPUs are vital for training CNNs

efficiently because of their performance on linear algebraic processes.
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3.2 The Datasets :

3.2.1 Tuberculosis CT-scans dataset: The models were pretrained on the binary

classification of tuberculosis CT-scans, which shares the same domain (chest CT-scans) of the

target task (COVID-19 binary classification). The pretrained-model has been trained on a

public dataset collected by a team of researchers[35] , containing 7000 x-ray JPEG images that

are equally balanced between “negative” class and “positive” class. Out of those 7000

available images, 350 images were used for validation and monitoring networks performance

as they train, leaving 6650 for pretraining the CNN.

4.2.2 COVID-19 CT-scans dataset: One of the datasets that have been widely used in many

research papers was the COVID-19 Radiography Dataset[36]. However, the images that are

classified as “negative” suffered from a pediatric bias, where all of them were collected from

children, while all of the COVID-19 scans were of adults. This may lead the model to learn

wrong patterns, which could affect the reliability of the experiment results. To address that

issue, I have replaced images of the negative class from the original dataset with ones from

the NIH[37] chest x-ray dataset from 2017 that are labeled with “no findings” .
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Figure (7): A figure that shows the pediatric bias in the negative class of the COVID-19

dataset. “Negative” images were replaced with ones from the NIH dataset

The dataset that is used for training on binary classification is a dataset that consists of 1134

COVID-19 positive images and 1150 negative images. However, I have only used 300

images from each class i.e 600 for training in total to examine the research question under

significant data scarcity conditions, which is the motivation for using TL across medical

datasets. The performance of the network was evaluated using 4 equally-sized datasets

composed of the rest of the labeled images, each one containing 150 images for each class, to

increase the certainty about the relative performance of the four models

3.3 The model architecture :

The model’s architecture that was used for the experiment is Krizhevsky’s Alexnet[38], a CNN

architecture that consists of 5 convolutional layers followed by 3 FC layers as shown in

Figure (8). The reason behind choosing this architecture is its relatively low number of

parameters compared to other architectures, given the limitations of available computational

resources. Its output layer was adjusted to have one output for binary classification rather

than 1000. Furthermore, significant modifications have been made to the architecture for

experimenting. Originally, the architecture had both BN and dropout implemented, however,

the architecture was modified to create two other model architectures, where each one has

one of the two techniques implemented. Furthermore, the baseline and data augmentation

models were created by removing both of the techniques from the original architecture. This

was done to evaluate the impact of each regularization technique on pretraining on its own.

The weights of all of the pretrained models were transferred to a unified Alexnet architecture,
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to evaluate the generalizability of the learned parameters of each model, particularly by

examining their performance on unseen data.

Figure (8): The architecture of the network used for the experiment: “AlexNet”[38]

3.4 Preprocessing :

To feed the data of the training dataset into the model, I have used Keras’

ImageDataGenerator[39], to automate resizing the images to the fixed input size of AlexNet

of 224* 224. Furthermore, all the images were preprocessed to grayscale, as I have noticed

that many images in the tuberculosis dataset that are classified to be positive are colored as

shown in Figure (9), while all the negative ones and the entire COVID-19 dataset images

were grayscale, which could result in wrong generalizations that would affect the results.
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Figure (9): Some of the colored samples that were found in the tuberculosis dataset positive class

.

Besides preprocessing, ImageDataGenerator was used for applying data augmentation for

one of the pretrained models, where several transformations were applied to artificially

increase the size of the network. The transformations included: vertical shifts, horizontal

shifts, zoom in and out, and contrast variations as shown in Figure (10).

Figure(10): A number of basic geometric transformations and variations of contrast applied to one of

the tuberculosis CT-scans.

3.5 Hyperparameters used in the experiment :

Hyperparameter Description Hyperparameter Value Notes

Learning rate A constant that
indicates the amount by
which the parameters of
the model are updated.
[40]

Initial rate for
pre-training = 10-2. It
was reduced by a factor
of 10-2 when the
learning curve
plateaued.

Learning rate for
fine-tuning =  10-3. It
was kept constant

After experimenting,
those were found to be
the most suitable
learning rate

Batch size The number of the
images in one batch,
where the parameters
are updated after each
one.

64 -

Loss function The objective function
that assesses the Binary cross-entropy

A loss function for
binary classification
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performance of the
model on each iteration

(CE)[41] problems

Optimizer The algorithm that is
used in updating the
parameters after error
calculation

Adagrad[42]
Despite Adam being
the state-of-the-art of
optimization
algorithms[43], Adagrad
was found to have a
more stable
performance. This
could be because of the
absence of the
momentum
implementation in the
optimizer, making
Adagrad more stable

Number of epochs The number of the
complete iterations
over the whole dataset

Pretraining: 25

Fine-tuning: 10
-

Table (1): The hyperparameters used in training the models

3.6 Metrics used in evaluation:

Given that all the datasets were balanced, there was no need for metrics that deal with

unbalanced datasets. Accuracy was used for evaluation.

=𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑇𝑃, 𝑇𝐹, 𝐹𝑃, 𝐹𝑁 ) 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Equation (2): The formula for accuracy, where TP is true positive, TF is true negative, FP is false positive

and FN is false negative. , the higher the better[44]𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ϵ [0, 1]
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4. Experimental Results

Model

Validation loss
on the source task

(tuberculosis binary classification)

Validation accuracy
on the source task

(tuberculosis binary classification)

Without regularization during
pre-training (baseline) 0.283 0.962

With data augmentation 0.124 0.974

With Dropout 0.085 0.986

With BN (best performing) 0.227 0.989

Table (2): The performance of the models after pretraining on tuberculosis binary classification

Validation accuracy on the target task (COVID-19 binary classification)

Model Dataset 1 Dataset 2 Dataset 3 Dataset 4 Average accuracy ± uncertainty

Without regularization
(baseline) 0.8 0.8833 0.8933 0.85 0.856 ± 0.042

With data augmentation 0.7567 0.9167 0.9 0.84 0.853 ± 0.072

With Dropout 0.8067 0.8967 0.9 0.8633 0.866 ± 0.043

With BN (best performing) 0.8633 0.9267 0.9167 0.93 0.909 ± 0.031

Table (3): The performance of the models after fine-tuning on COVID-19 binary classification. Two out of the

three regularization techniques outperformed the baseline model
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Graph (1): The learning curves during the 10 epochs of fine-tuning on the target task (COVID-19 binary

classification)

5. Discussion  :

By examining the performances of the models during pretraining on the source-task

(tuberculosis) in Table (3), it is noted that the regularization improves the performance of the

models on the validation data i.e unseen data compared to the unregularized baseline model,

which was only able to achieve an accuracy of 0.962 and loss of 0.283. The BN model had

the best performance on the source task (tuberculosis). After the models were fine-tuned, the

trend of the regularized models outperforming the unregularized baseline model on validation

data almost continued, as we can see in Table (4). Dropout and BN models outperformed the

baseline, where the dropout model achieved an average accuracy of 0.866 ± 0.043 and BN
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model achieved 0.909 ± 0.031, compared to the baseline which only achieved an average

accuracy of 0.856 ± 0.042 This has supported the presence of the positive effects of

regularization of pretraining on TL performance across medical imaging datasets.

However, the data augmentation model has performed slightly worse on average, where it has

only achieved an average accuracy of 0.853 ± 0.072 across the 4 datasets. Despite that, there

are large variations in the performance of the data augmentation across the test datasets,

which resulted in a large uncertainty (0.072 in accuracy), as it has performed extremely

better on datasets (2) (0.9167) and (3) (0.9) compared to (1) (0.757) and (4) (0.84). This

rendered the data inconclusive on the relative performance of the data augmentation model to

the baseline.

Nevertheless, I argue that this experiment did not demonstrate the potential of data

augmentation in pretraining for improving TL across medical datasets. I believe that this

weaker performance on average compared to the baseline model was a result of the

irrelevance of the transformations applied, which were to a great extent arbitrary given the

absence of my medical-domain knowledge. In turn, this has limited the ability of the data

augmentation to introduce variations that would be present in unseen CT-scans to the

pretrained model, which has limited the potential of this regularization technique on

improving TL performance on validation data of the target-task (COVID-19). More relevant

transformations could be learned from medical experts that introduce relevant variations to

the model could be implemented in future research. Furthermore, geometric transformations

and contrast variations are a narrow class of data augmentation. There are more sophisticated
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techniques of data augmentation such as Generative Adversarial Networks (GANs)[45], which

could be also investigated in future research.

The best performing fine-tuned model was the BN model, where it has achieved an accuracy

of 0.909 ± 0.031 after 10 epochs, outperforming the other three models. However, I believe

that considering this improvement to be purely based on increased generalizability of the

features learned would be an overestimation of the generalizability added to the model by the

regularization effect of BN. In addition to regularization effects, BN also significantly

fastened and stabilized learning on the source task (tuberculosis), as it makes the optimization

landscape significantly smoother, this smoothness induces a more predictive and stable

behavior of the gradients, allowing for faster training[46]. This was a clear advantage to the

BN pretrained model given the limited number of epochs undertaken due to the limitation of

the available resources (only 25), where other models could have performed better with a

larger number of epochs. This can be appreciated by comparing the learning curves of the

different models on tuberculosis binary classification (source task). The BN model has

converged only after 2 epochs, unlike every other model whose learning curves have not

converged as completely. Despite that, the baseline model learning curve has almost

converged in Graph(2), which can infer that not a significant improvement would be achieved

by further epochs, which could compensate for the wide gap between the baseline and the BN

models performance on unseen data (0.053 in average accuracy). Therefore, BN model

performance remains as empirical support for the potential of regularization in pretraining for

improving TL across medical imaging datasets
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Graph (2): The learning curves during the 25 epochs of pretraining on the source task (tuberculosis binary

classification)

6. Conclusion:

It was concluded that the regularization of the pretraining can contribute to a significant

extent to the performance of TL across imaging medical datasets as proposed. Both dropout

and BN techniques in pretraining have resulted in increased generalizability of their

fine-tuned models, which was reflected in the superior performances of those models on

validation data compared to the baseline one. However, the data for the data augmentation

model could not support the presence of those positive effects of regularization of pretraining

on TL performance, yet the discussion has shown the flaws in implementation may have

prevented the experiment from showing those effects. Furthermore, the discussion has

demonstrated how BN effects on training speed could have led to an inflated estimation to a

certain extent of the improvement in the generalizability of the fine-tuned model, yet it

showed how it remains an empirical support positive effects of regularization of the

pretraining on the performance of TL across medical imaging datasets.
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II. Appendix

1- Code for the experiments :

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import os

import keras

from keras.models import Sequential, Model

from keras.layers import Dense, Activation, Dropout, Flatten, Conv2D,

MaxPooling2D,MaxPool2D

from keras.layers.normalization import BatchNormalization

import numpy as np

np.random.seed(42)

from keras.models import load_model

import tensorflow as tf

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras import regularizers

import imageio

import seaborn

import shutil

seaborn.set()

tech_name = "data_aug"

all_dict = "../input/tuberculosis-tb-chest-xray-dataset/Dataset"

pre_data_gen = ImageDataGenerator(rescale=1.0/255,

shear_range=0.2,

zoom_range=0.2,

brightness_range=(0.2, 0.8),

width_shift_range=0.2,

height_shift_range=0.2)

pre_train_gen = pre_data_gen.flow_from_directory(directory = all_dict,

classes=["Normal",

"Tuberculosis"],color_mode='grayscale',class_mode="binary",target_size=(256,

256), shuffle = True, subset = "training")

metrics = [

'accuracy',

tf.keras.metrics.Precision(name='precision'),

tf.keras.metrics.Recall(name='recall'),

keras.metrics.AUC(name="auc"),

]
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AlexNet = Sequential()

#1st Convolutional Layer

AlexNet.add(Conv2D(filters=96, input_shape=(256,256,1), kernel_size=(11,11),

strides=(4,4), padding='same'))

AlexNet.add(Activation('relu'))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#2nd Convolutional Layer

AlexNet.add(Conv2D(filters=256, kernel_size=(5, 5), strides=(1,1),

padding='same'))

AlexNet.add(Activation('relu'))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#3rd Convolutional Layer

AlexNet.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1),

padding='same'))

AlexNet.add(Activation('relu'))

#4th Convolutional Layer

AlexNet.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1),

padding='same'))

AlexNet.add(Activation('relu'))

#5th Convolutional Layer

AlexNet.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1),

padding='same'))

AlexNet.add(Activation('relu'))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#Passing it to a Fully Connected layer

AlexNet.add(Flatten())

# 1st Fully Connected Layer

AlexNet.add(Dense(4096, input_shape=(32,32,3,)))

AlexNet.add(Activation('relu'))

# Add Dropout to prevent overfitting

#2nd Fully Connected Layer

AlexNet.add(Dense(4096))

AlexNet.add(Activation('relu'))

#Add Dropout

#3rd Fully Connected Layer

AlexNet.add(Dense(1000))

AlexNet.add(Activation('relu'))

#Add Dropout
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#Output Layer

AlexNet.add(Dense(1))

AlexNet.add(Activation('sigmoid'))

pre_val_gen = pre_data_gen.flow_from_directory(directory = all_dict,

classes=["Normal",

"Tuberculosis"],color_mode='grayscale',class_mode="binary",target_size=(256,

256), shuffle = True, subset = "validation")

csv_logger = tf.keras.callbacks.CSVLogger('training_pretrained_' + tech_name

+".csv", append=True)

batch_size = 64

history = tf.keras.callbacks.History()

opt = keras.optimizers.Adagrad(learning_rate= 1e-2)

reduceLR = tf.keras.callbacks.ReduceLROnPlateau(mintor="loss",min_lr=1e-6,

factor=1e-2)

callbacks_list = [csv_logger,history,reduceLR]

AlexNet.compile(optimizer=opt,loss='binary_crossentropy',metrics=metrics)

history = AlexNet.fit(x = pre_train_gen, validation_data = "pre_val_gen",

epochs = 9, batch_size = batch_size,callbacks = callbacks_list,

shuffle=True)

AlexNet.save_weights( "alexnet_pretrainedTB_" + tech_name + ".h5")

tech_name = "dropout"

all_dict = "../input/tuberculosis-tb-chest-xray-dataset/Dataset"

pre_data_gen = ImageDataGenerator(rescale=1.0/255, validation_split = 0.05)

pre_train_gen = pre_data_gen.flow_from_directory(directory = all_dict,

classes=["Normal",

"Tuberculosis"],color_mode='grayscale',class_mode="binary",target_size=(256,

256), shuffle = True, subset = "training")

pre_val_gen = pre_data_gen.flow_from_directory(directory = all_dict,

classes=["Normal",

"Tuberculosis"],color_mode='grayscale',class_mode="binary",target_size=(256,

256), shuffle = True, subset = "validation")

metrics = [

'accuracy',

tf.keras.metrics.Precision(name='precision'),

tf.keras.metrics.Recall(name='recall'),

keras.metrics.AUC(name="auc"),

]
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AlexNet = Sequential()

#1st Convolutional Layer

AlexNet.add(Conv2D(filters=96, input_shape=(256,256,1), kernel_size=(11,11),

strides=(4,4), padding='same'))

AlexNet.add(Activation('relu'))

# AlexNet.add(BatchNormalization())

# AlexNet.add(Dropout(0.4))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#2nd Convolutional Layer

AlexNet.add(Conv2D(filters=256, kernel_size=(5, 5), strides=(1,1),

padding='same'))

# AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

AlexNet.add(Dropout(0.3))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#3rd Convolutional Layer

AlexNet.add(Conv2D(filters=384,  kernel_size=(3,3), strides=(1,1),

padding='same'))

# AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

AlexNet.add(Dropout(0.3))

#4th Convolutional Layer

AlexNet.add(Conv2D(filters=384,  kernel_size=(3,3), strides=(1,1),

padding='same'))

# AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

AlexNet.add(Dropout(0.3))

#5th Convolutional Layer

AlexNet.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1),

padding='same'))

# AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

AlexNet.add(Dropout(0.3))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#Passing it to a Fully Connected layer

AlexNet.add(Flatten())

# 1st Fully Connected Layer

AlexNet.add(Dense(4096, input_shape=(32,32,3,)))
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AlexNet.add(Activation('relu'))

#2nd Fully Connected Layer

AlexNet.add(Dense(4096))

AlexNet.add(Activation('relu'))

#3rd Fully Connected Layer

AlexNet.add(Dense(1000))

AlexNet.add(Activation('relu'))

#Output Layer

AlexNet.add(Dense(1))

AlexNet.add(Activation('sigmoid'))

csv_logger = tf.keras.callbacks.CSVLogger('training_pretrained_' + tech_name

+".csv", append=True)

batch_size = 64

history = tf.keras.callbacks.History()

opt = keras.optimizers.Adagrad(learning_rate= 1e-2)

reduceLR =

tf.keras.callbacks.ReduceLROnPlateau(mintor="val_loss",min_lr=1e-6,

factor=1e-2)

callbacks_list = [csv_logger,history,reduceLR]

AlexNet.compile(optimizer=opt,loss='binary_crossentropy',metrics=metrics)

history = AlexNet.fit(x = pre_train_gen, validation_data =pre_val_gen,

epochs = 25, batch_size = batch_size,callbacks = callbacks_list,

shuffle=True)

AlexNet.save_weights( "alexnet_pretrainedTB_" + tech_name + ".h5")

tech_name = "bn"

all_dict = "../input/tuberculosis-tb-chest-xray-dataset/Dataset"

pre_data_gen = ImageDataGenerator(rescale=1.0/255, validation_split = 0.05)

pre_train_gen = pre_data_gen.flow_from_directory(directory = all_dict,

classes=["Normal",

"Tuberculosis"],color_mode='grayscale',class_mode="binary",target_size=(256,

256), shuffle = True, subset = "training")

pre_val_gen = pre_data_gen.flow_from_directory(directory = all_dict,

classes=["Normal",

"Tuberculosis"],color_mode='grayscale',class_mode="binary",target_size=(256,

256), shuffle = True, subset = "validation")

metrics = [

'accuracy',
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tf.keras.metrics.Precision(name='precision'),

tf.keras.metrics.Recall(name='recall'),

keras.metrics.AUC(name="auc"),

]

AlexNet = Sequential()

#1st Convolutional Layer

AlexNet.add(Conv2D(filters=96, input_shape=(256,256,1), kernel_size=(11,11),

strides=(4,4), padding='same'))

AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#2nd Convolutional Layer

AlexNet.add(Conv2D(filters=256, kernel_size=(5, 5), strides=(1,1),

padding='same'))

AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#3rd Convolutional Layer

AlexNet.add(Conv2D(filters=384,  kernel_size=(3,3), strides=(1,1),

padding='same'))

AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

#4th Convolutional Layer

AlexNet.add(Conv2D(filters=384,  kernel_size=(3,3), strides=(1,1),

padding='same'))

AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

#5th Convolutional Layer

AlexNet.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1),

padding='same'))

AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#Passing it to a Fully Connected layer

AlexNet.add(Flatten())

# 1st Fully Connected Layer

AlexNet.add(Dense(4096, input_shape=(32,32,3,)))

AlexNet.add(Activation('relu'))
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#2nd Fully Connected Layer

AlexNet.add(Dense(4096))

AlexNet.add(Activation('relu'))

#3rd Fully Connected Layer

AlexNet.add(Dense(1000))

AlexNet.add(Activation('relu'))

#Output Layer

AlexNet.add(Dense(1))

AlexNet.add(Activation('sigmoid'))

AlexNet.summary()

csv_logger = tf.keras.callbacks.CSVLogger('training_pretrained_' + tech_name

+".csv", append=True)

batch_size = 64

history = tf.keras.callbacks.History()

opt = keras.optimizers.Adagrad(learning_rate= 1e-2)

reduceLR =

tf.keras.callbacks.ReduceLROnPlateau(mintor="val_loss",min_lr=1e-6,

factor=1e-2)

callbacks_list = [csv_logger,history,reduceLR]

AlexNet.compile(optimizer=opt,loss='binary_crossentropy',metrics=metrics)

history = AlexNet.fit(x = pre_train_gen,validation_data = pre_val_gen

,epochs = 25, batch_size = batch_size,callbacks = callbacks_list,

shuffle=True)

AlexNet.save_weights( "alexnet_pretrainedTB_" + tech_name + ".h5")

tech_name = "noreg"

all_dict = "../input/tuberculosis-tb-chest-xray-dataset/Dataset"

pre_data_gen = ImageDataGenerator(rescale=1.0/255, validation_split = 0.05)

pre_train_gen = pre_data_gen.flow_from_directory(directory = all_dict,

classes=["Normal",

"Tuberculosis"],color_mode='grayscale',class_mode="binary",target_size=(256,

256), shuffle = True, subset = "training")

pre_val_gen = pre_data_gen.flow_from_directory(directory = all_dict,

classes=["Normal",

"Tuberculosis"],color_mode='grayscale',class_mode="binary",target_size=(256,

256), shuffle = True, subset = "validation")

metrics = [

'accuracy',
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tf.keras.metrics.Precision(name='precision'),

tf.keras.metrics.Recall(name='recall'),

keras.metrics.AUC(name="auc"),

]

AlexNet = Sequential()

#1st Convolutional Layer

AlexNet.add(Conv2D(filters=96, input_shape=(256,256,1), kernel_size=(11,11),

strides=(4,4), padding='same'))

# AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#2nd Convolutional Layer

AlexNet.add(Conv2D(filters=256, kernel_size=(5, 5), strides=(1,1),

padding='same'))

# AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#3rd Convolutional Layer

AlexNet.add(Conv2D(filters=384,  kernel_size=(3,3), strides=(1,1),

padding='same'))

# AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

#4th Convolutional Layer

AlexNet.add(Conv2D(filters=384,  kernel_size=(3,3), strides=(1,1),

padding='same'))

# AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

#5th Convolutional Layer

AlexNet.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1),

padding='same'))

# AlexNet.add(BatchNormalization())

AlexNet.add(Activation('relu'))

AlexNet.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#Passing it to a Fully Connected layer

AlexNet.add(Flatten())

# 1st Fully Connected Layer

AlexNet.add(Dense(4096, input_shape=(32,32,3,)))

AlexNet.add(Activation('relu'))
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#2nd Fully Connected Layer

AlexNet.add(Dense(4096))

AlexNet.add(Activation('relu'))

#3rd Fully Connected Layer

AlexNet.add(Dense(1000))

AlexNet.add(Activation('relu'))

#Output Layer

AlexNet.add(Dense(1))

AlexNet.add(Activation('sigmoid'))

csv_logger = tf.keras.callbacks.CSVLogger('training_pretrained_' + tech_name

+".csv", append=True)

batch_size = 64

history = tf.keras.callbacks.History()

opt = keras.optimizers.Adagrad(learning_rate= 1e-2)

reduceLR = tf.keras.callbacks.ReduceLROnPlateau(mintor="loss",min_lr=1e-6,

factor=1e-2)

callbacks_list = [csv_logger,history,reduceLR]

AlexNet.compile(optimizer=opt,loss='binary_crossentropy',metrics=metrics)

history = AlexNet.fit(x = pre_train_gen, validation_data = pre_val_gen,

epochs = 25, batch_size = batch_size,callbacks = callbacks_list,

shuffle=True)

AlexNet.save_weights( "alexnet_pretrainedTB_" + tech_name + ".h5")

batch_size = 64

dataset = "dbcovid30"

train_dict = os.path.join("../input/",dataset)

test_dict = "../input/covidtestsets/COVID-DB-TEST-"

data_gen = ImageDataGenerator(rescale=1.0/255, validation_split = 0.05)

train_gen = data_gen.flow_from_directory(directory = train_dict,classes =

["NORMAL", "COVID-19"], class_mode="binary",target_size=(256, 256),

subset="training")

val_gen = data_gen.flow_from_directory(directory = train_dict ,classes =

["NORMAL", "COVID-19"], class_mode="binary", target_size=(256, 256),

subset="validation")

43



###################################

#Instantiation

AlexNet_TL = Sequential()

#1st Convolutional Layer

AlexNet_TL.add(Conv2D(filters=96, input_shape=(256,256,1),

kernel_size=(11,11), strides=(4,4), padding='same'))

# AlexNet_TL.add(BatchNormalization())

AlexNet_TL.add(Activation('relu'))

# AlexNet.add(Dropout(0.2))

AlexNet_TL.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#2nd Convolutional Layer

AlexNet_TL.add(Conv2D(filters=256, kernel_size=(5, 5), strides=(1,1),

padding='same'))

# AlexNet_TL.add(BatchNormalization())

AlexNet_TL.add(Activation('relu'))

# AlexNet.add(Dropout(0.3))

AlexNet_TL.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#3rd Convolutional Layer

AlexNet_TL.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1),

padding='same'))

# AlexNet_TL.add(BatchNormalization())

AlexNet_TL.add(Activation('relu'))

# AlexNet.add(Dropout(0.3))

#4th Convolutional Layer

AlexNet_TL.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1),

padding='same'))

# AlexNet_TL.add(BatchNormalization())

# AlexNet.add(Dropout(0.3))

AlexNet_TL.add(Activation('relu'))

#5th Convolutional Layer

AlexNet_TL.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1),

padding='same'))

# AlexNet_TL.add(BatchNormalization())

AlexNet_TL.add(Activation('relu'))

# AlexNet.add(Dropout(0.3))
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AlexNet_TL.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))

#Passing it to a Fully Connected layer

AlexNet_TL.add(Flatten())

# 1st Fully Connected Layer

AlexNet_TL.add(Dense(4096, input_shape=(32,32,3,)))

AlexNet_TL.add(Activation('relu'))

# Add Dropout to prevent overfitting

#2nd Fully Connected Layer

AlexNet_TL.add(Dense(4096))

AlexNet_TL.add(Activation('relu'))

#3rd Fully Connected Layer

AlexNet_TL.add(Dense(1000))

AlexNet_TL.add(Activation('relu'))

#Output Layer

AlexNet_TL.add(Dense(1))

AlexNet_TL.add(Activation('sigmoid'))

###################################

AlexNet_TL.load_weights("../input/data-aug/alexnet_pretrainedTB_data.h5")

history_TL = tf.keras.callbacks.History()

csv_logger_TL = tf.keras.callbacks.CSVLogger("model : " + "L2" + ".csv",

append=True)

callbacks_TL = [ csv_logger_TL ,history_TL ]

opt_TL = keras.optimizers.Adagrad(learning_rate=1e-3)

for l in AlexNet_TL.layers[:-9] :

l.trainable = False

metrics_TL = [

'accuracy',

tf.keras.metrics.Precision(name='precision'),

tf.keras.metrics.Recall(name='recall'),

keras.metrics.AUC(name="auc")]
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AlexNet_TL.compile(optimizer=opt_TL,loss='binary_crossentropy',metrics=metri

cs_TL)

TL_history = AlexNet_TL.fit(x = train_gen, validation_data = val_gen, epochs

= 10 , batch_size = batch_size, callbacks= callbacks_TL)

for k in range(1,5) :

test_gen = data_gen.flow_from_directory(directory = test_dict + str(k)

,classes = ["NORMAL", "COVID-19"], class_mode="binary", target_size=(256,

256))

print("testing for model : " + "data" + " test-dataset : " + str (k))

AlexNet_TL.evaluate(test_gen)

2- Data collected

Pretraining (no regularization “baseline” )

epoch

accurac

y auc loss

precisio

n recall

val_acc

uracy val_auc val_loss

val_pre

cision

val_rec

all

0 0.675 0.737 0.627 0.659 0.726 0.714 0.989 0.512 1.000 0.429

1 0.832 0.904 0.394 0.830 0.836 0.951 0.990 0.176 0.920 0.989

2 0.872 0.942 0.307 0.871 0.873 0.909 0.991 0.228 0.845 1.000

3 0.908 0.967 0.234 0.911 0.904 0.863 0.989 0.313 0.785 1.000

4 0.921 0.975 0.201 0.918 0.924 0.909 0.991 0.216 0.845 1.000

5 0.940 0.983 0.165 0.942 0.938 0.954 0.996 0.105 0.930 0.983

6 0.943 0.985 0.153 0.944 0.942 0.943 0.998 0.131 0.897 1.000

7 0.950 0.989 0.134 0.949 0.951 0.966 0.997 0.090 0.988 0.943

8 0.957 0.992 0.113 0.956 0.958 0.969 0.999 0.071 0.946 0.994

9 0.961 0.993 0.106 0.960 0.962 0.971 0.998 0.072 0.951 0.994

10 0.969 0.995 0.086 0.970 0.969 0.989 0.999 0.034 0.983 0.994

11 0.965 0.995 0.092 0.963 0.966 0.977 0.999 0.054 0.961 0.994

12 0.973 0.997 0.073 0.972 0.974 0.983 1.000 0.032 0.972 0.994
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13 0.976 0.997 0.069 0.976 0.975 0.983 1.000 0.050 0.972 0.994

14 0.982 0.998 0.052 0.982 0.982 0.991 1.000 0.022 0.989 0.994

15 0.983 0.998 0.048 0.983 0.982 0.980 1.000 0.033 0.962 1.000

16 0.982 0.998 0.050 0.983 0.981 0.977 0.999 0.048 0.961 0.994

17 0.987 0.999 0.036 0.987 0.987 0.991 1.000 0.024 0.989 0.994

18 0.988 0.999 0.032 0.989 0.987 0.971 1.000 0.070 0.946 1.000

19 0.990 1.000 0.027 0.990 0.989 0.983 1.000 0.044 0.972 0.994

20 0.974 0.997 0.065 0.973 0.975 0.977 0.998 0.063 0.983 0.971

21 0.993 1.000 0.023 0.992 0.993 0.983 1.000 0.034 0.972 0.994

22 0.991 0.999 0.024 0.992 0.990 0.983 1.000 0.040 0.972 0.994

23 0.995 1.000 0.015 0.996 0.995 0.986 1.000 0.029 0.978 0.994

24 0.995 1.000 0.016 0.996 0.995 0.986 1.000 0.048 0.972 1.000

Pretraining (dropout) :

epoch

accurac

y auc loss

precisio

n recall

val_acc

uracy val_auc val_loss

val_pre

cision

val_rec

all

0 0.5967 0.6642 0.6655 0.5909 0.6286 0.8457 0.9683 0.5954 0.7665 0.9943

1 0.8008 0.8702 0.4580 0.8025 0.7979 0.8829 0.9774 0.4415 0.9653 0.7943

2 0.8692 0.9291 0.3400 0.8665 0.8728 0.8343 0.9634 0.4430 0.7511 1.0000

3 0.8771 0.9438 0.3059 0.8777 0.8764 0.7000 0.9567 0.5494 0.6250 1.0000

4 0.8970 0.9588 0.2613 0.9007 0.8923 0.8486 0.9963 0.3972 0.7675 1.0000

5 0.9048 0.9665 0.2344 0.9116 0.8965 0.9371 0.9964 0.2097 0.8923 0.9943

6 0.9206 0.9747 0.2028 0.9237 0.9170 0.9486 0.9951 0.2141 0.9110 0.9943

7 0.9304 0.9793 0.1831 0.9365 0.9233 0.9143 0.9989 0.2026 0.8537 1.0000

8 0.9405 0.9840 0.1593 0.9442 0.9362 0.9029 0.9962 0.2361 0.8373 1.0000

9 0.9432 0.9849 0.1551 0.9448 0.9414 0.9371 0.9993 0.1668 0.8883 1.0000

10 0.9474 0.9882 0.1358 0.9501 0.9444 0.8200 0.9958 0.3357 0.7353 1.0000

11 0.9550 0.9906 0.1212 0.9571 0.9528 0.9657 0.9996 0.0958 0.9358 1.0000

12 0.9496 0.9889 0.1296 0.9517 0.9474 0.8257 0.9978 0.3587 0.7415 1.0000

13 0.9611 0.9927 0.1046 0.9593 0.9630 0.9829 0.9999 0.0644 0.9669 1.0000

14 0.9702 0.9952 0.0830 0.9708 0.9696 0.9457 1.0000 0.1157 0.9021 1.0000
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15 0.9699 0.9954 0.0808 0.9705 0.9693 0.9857 0.9999 0.0675 0.9722 1.0000

16 0.9659 0.9945 0.0928 0.9641 0.9678 0.9771 1.0000 0.0850 0.9563 1.0000

17 0.9777 0.9971 0.0642 0.9760 0.9795 0.9371 1.0000 0.1186 0.8883 1.0000

18 0.9808 0.9981 0.0526 0.9810 0.9805 0.9857 1.0000 0.0477 0.9722 1.0000

19 0.9777 0.9970 0.0622 0.9786 0.9768 0.9629 0.9996 0.1011 0.9309 1.0000

20 0.9845 0.9986 0.0438 0.9849 0.9841 0.9771 1.0000 0.0528 0.9563 1.0000

21 0.9839 0.9984 0.0448 0.9832 0.9847 0.9771 1.0000 0.0539 0.9563 1.0000

22 0.9884 0.9990 0.0350 0.9880 0.9889 0.9429 1.0000 0.1101 0.8974 1.0000

23 0.9901 0.9993 0.0326 0.9889 0.9913 0.9857 1.0000 0.0425 0.9722 1.0000

24 0.9883 0.9993 0.0293 0.9871 0.9895 0.9600 1.0000 0.0846 0.9259 1.0000

Pretraining (batch normalization ) :

epoch

accurac

y auc loss

precisio

n recall

val_acc

uracy val_auc val_loss

val_pre

cision

val_rec

all

0 0.894 0.954 0.349 0.893 0.897 0.500 0.884 1.433 0.500 1.000

1 0.963 0.993 0.103 0.964 0.963 0.840 0.973 0.512 0.758 1.000

2 0.976 0.997 0.068 0.977 0.974 0.991 1.000 0.028 0.983 1.000

3 0.985 0.998 0.045 0.985 0.985 0.974 0.998 0.066 0.972 0.977

4 0.985 0.999 0.041 0.986 0.983 0.986 1.000 0.032 0.972 1.000

5 0.994 1.000 0.020 0.995 0.992 0.991 1.000 0.018 0.983 1.000

6 0.994 1.000 0.019 0.995 0.993 0.983 1.000 0.038 0.967 1.000

7 0.997 1.000 0.010 0.997 0.996 0.986 1.000 0.025 0.978 0.994

8 1.000 1.000 0.002 1.000 0.999 0.991 1.000 0.012 0.983 1.000

9 0.999 1.000 0.004 0.999 0.999 0.989 1.000 0.021 0.978 1.000

10 0.981 0.994 0.077 0.981 0.980 0.994 1.000 0.012 0.989 1.000

11 0.997 1.000 0.011 0.998 0.995 0.989 1.000 0.019 0.978 1.000

12 0.996 1.000 0.010 0.996 0.997 0.989 1.000 0.028 0.978 1.000

13 0.998 1.000 0.006 0.998 0.998 0.991 1.000 0.016 0.983 1.000

14 1.000 1.000 0.002 1.000 1.000 0.986 1.000 0.038 0.972 1.000

15 1.000 1.000 0.001 1.000 1.000 0.991 1.000 0.018 0.983 1.000

16 1.000 1.000 0.001 1.000 1.000 0.989 1.000 0.017 0.978 1.000

17 1.000 1.000 0.000 1.000 1.000 0.991 1.000 0.014 0.983 1.000

18 0.997 1.000 0.010 0.997 0.998 0.986 1.000 0.026 0.978 0.994

19 0.9995 1.0000 0.0025 1.0000 0.9991 0.9886 0.9998 0.0220 0.9831 0.9943

20 0.9994 1.0000 0.0022 0.9997 0.9991 0.9886 0.9998 0.0210 0.9831 0.9943
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21 0.9995 1.0000 0.0020 0.9994 0.9997 0.9886 0.9998 0.0210 0.9831 0.9943

22 0.9988 1.0000 0.0026 0.9985 0.9991 0.9886 0.9998 0.0201 0.9831 0.9943

23 0.9992 1.0000 0.0023 0.9997 0.9988 0.9886 0.9998 0.0204 0.9831 0.9943

24 0.9999 1.0000 0.0014 1.0000 0.9997 0.9886 0.9998 0.0202 0.9831 0.9943

Pretraining (data augmentation) :

epoch

accurac

y auc loss

precisio

n recall

val_acc

uracy val_auc val_loss

val_pre

cision

val_rec

all

0 0.618 0.669 0.661 0.604 0.689 0.649 0.836 0.572 0.894 0.337

1 0.725 0.785 0.579 0.739 0.696 0.823 0.921 0.428 0.742 0.989

2 0.792 0.851 0.493 0.787 0.800 0.897 0.953 0.346 0.897 0.897

3 0.811 0.883 0.438 0.809 0.815 0.809 0.929 0.403 0.897 0.697

4 0.837 0.909 0.388 0.837 0.837 0.931 0.968 0.248 0.936 0.926

5 0.848 0.920 0.364 0.844 0.854 0.820 0.973 0.385 0.737 0.994

6 0.863 0.934 0.332 0.864 0.863 0.926 0.978 0.264 0.941 0.909

7 0.871 0.941 0.313 0.872 0.870 0.829 0.981 0.365 0.745 1.000

8 0.868 0.941 0.314 0.870 0.866 0.803 0.974 0.380 0.717 1.000

9 0.877 0.948 0.295 0.878 0.875 0.849 0.977 0.349 0.770 0.994

10 0.881 0.954 0.277 0.878 0.884 0.949 0.993 0.157 0.911 0.994

11 0.890 0.958 0.264 0.892 0.888 0.909 0.974 0.217 0.870 0.960

12 0.900 0.963 0.246 0.901 0.898 0.929 0.992 0.180 0.883 0.989

13 0.890 0.958 0.264 0.891 0.890 0.949 0.990 0.144 0.920 0.983

14 0.907 0.968 0.231 0.911 0.902 0.931 0.994 0.162 0.879 1.000

15 0.909 0.968 0.229 0.912 0.906 0.951 0.986 0.157 0.934 0.971

16 0.909 0.971 0.218 0.910 0.908 0.954 0.991 0.149 0.934 0.977

17 0.917 0.973 0.211 0.920 0.914 0.957 0.989 0.125 0.960 0.954

18 0.921 0.976 0.196 0.923 0.918 0.929 0.984 0.188 0.887 0.983

19 0.920 0.975 0.202 0.923 0.917 0.974 0.995 0.108 0.977 0.971

20 0.926 0.976 0.197 0.933 0.918 0.974 0.994 0.123 0.961 0.989

21 0.926 0.977 0.192 0.930 0.920 0.954 0.994 0.125 0.925 0.989

22 0.926 0.980 0.182 0.931 0.921 0.940 0.987 0.149 0.938 0.943

23 0.933 0.982 0.173 0.936 0.929 0.909 0.982 0.211 0.967 0.846

24 0.933 0.981 0.174 0.937 0.928 0.951 0.993 0.124 0.929 0.977
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