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1 Introduction

Cycling was one of my favourite hobbies as a child. Whether it was to school, in my neighbourhood,

or on Wii Fit, I spent a lot of my time trying to optimise my bike rides. It took this personal

hobby to gain an appreciation for bicycles as a physics invention, rather than a mere form of

transportation. After studying mechanics and fluid dynamics, I wanted to investigate the behaviour

of a bicycle travelling on a surface through a fluid and attempt to apply a model intended for larger

vehicles to the case of bicycle.

Fluid dynamics is often viewed as one of the toughest subdisciplines of fluid mechanics, a prominent

study within engineering. The coast-down test is a common procedure for a transportation vehicle

to collect information about its condition. It is a process in which the vehicle is accelerated to an

initial speed on a flat road, before neutrally coasting down to a low speed with no applied force. A

model for the case of a bicycle would explain observations and allow cyclists to develop techniques

which minimise drag components as much as feasible.

1.1 Aim

The aim of this study is to create a model using coast-down testing to calculate the distinct

values of a bicycle’s resistive force components, in order to understand how one can reduce them.

This study will analyse the qualitative results to understand the behaviour of a body in motion

through a fluid. Subsequently, it will touch upon how to make predictions at speed values beyond

those covered in this investigation. This investigation is an attempt to calculate the value of the

aerodynamic drag coefficient and rolling resistance. A secondary aim is to explain agreements and

disagreements with the hypothesis, thus identifying strengths and weaknesses of the model.

1.2 Research Question

How precisely can one determine the drag coefficient and separate the values of aerodynamic drag

and rolling resistance for a bicycle at different speeds?
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2 Background Information

2.1 Air Resistance

Air resistance, or aerodynamic drag, is the friction opposing the motion of a body surrounded

by a fluid. It is proportional to the square of the speed, thus dominating at high speeds. The

relationship between air resistance and speed for bodies with high values of Reynolds number can

be described as

Fa = kv2 =
1

2
ρACav

2 (1)

where ρ is fluid density, Ca is the drag coefficient, and v is speed.

2.1.1 Reynolds Number

In 1883, Osborne Reynold popularised the Reynolds number, which is a dimensionless quantity

describing fluid behaviour and the relationship between the flow of a body and its velocity, length,

density, and viscosity [3].

Cyclists have turbulent flow and high values of Reynolds number (105 < Re < 106) [5]. This allows

us to make two assumptions:

1. Air resistance is proportional to the velocity squared. Eq. 1 holds.

2. The aerodynamic drag coefficient is constant and independent of speed.

2.2 Rolling Resistance

Rolling resistance is the component of vehicle drag which is often overlooked, particularly at high

speeds. It is the opposing force which occurs when a body is rolling on a surface. Rolling resistance

can be calculated by

Fr = Cr ·N = Cr ·mg (2)

where Cr is the dimensionless rolling resistance coefficient, N is the normal reaction force, m is

mass, and g is the gravitational field strength taken as 9.81 N kg−1.
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At low speeds, it is the rolling resistance which dominates. It can be approximated to be constant

at speeds below 95 km h−1 [8], suitable for this speed range. At greater speeds, it is the coefficient

of rolling resistance which varies.

2.2.1 Hysteresis

Rubber hysteresis is an interesting concept which opens for a more thorough understanding of why

rolling resistance occurs, as it is one of the main causes. For every revolution of the bicycle wheel,

the rubber releases less energy during unloading (area under curve B) than it uses to deform the

rubber (area under curve A). Figure 2 shows a hysteresis loop, where the area between Curve

A and B represents the energy lost. This is accounted for by an increase in internal energy and

temperature.

Figure 1: Created using Microsoft Paint

Stress (y-axis) is defined as the force per unit area (Pascals) and strain (x-axis) is defined as the

change in length per unit length. The ratio between stress and strain is the Young’s Modulus

property, which describes the material’s elastic properties. The advantage of using this quantity

is that it allows for comparison between materials suitable for tyres. A smaller hysteresis loop is

preferred for tyres as it implies the material is resilient, ensuring they do not disintegrate because

of the increase in temperature.

In the following investigation, modern pneumatic tyres will be used as they minimises the rolling

resistance. The results will also reflect everyday cases, rather than special cases with rigid and

nonrubber wheels.
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2.3 Other Forces

2.3.1 Gravity and Weight

For a vehicle descending down a slope, a component of its weight acts as a tractive force. The

component of the weight parallel to the inclined plane can be calculated by

Fg = mg · sin θ (3)

where θ is the inclination angle.

The coast-down test on a descending slope should present results which match the test on a level

ground, thus an alternative way to test the model. Recording the terminal speed and inclination

angle is sufficient to make the desired calculations.

2.4 Conservation of Energy

Energy in a closed system is always conserved. This will act as a basis for the derivation of the

model equation.

In this investigation, the forms of energy present in the moving bicycle are:

• Translational kinetic energy when in linear motion.

• Rotational kinetic energy is the kinetic energy due to the rotation of the wheels.

For testing done down a slope, the change in gravitational potential energy must also be accounted

for.

2.5 Hypothesis

The rolling resistance will remain constant for all speeds examined in this investigation as the

rolling resistance coefficient is not a function of speed. On the other hand, the aerodynamic drag

will increase with speed.

As the Reynold’s number of the body remains approximately the same throughout the coast-down

test, speed does not affect the drag coefficient. Consequently, the coefficient of aerodynamic drag

will assumed to be a constant value for the speeds covered in this investigation. This will yield

values of air resistance which show its proportionality to the square of the speed.
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The velocity vs time (vt) graphs for each trial should show a rectangular hyperbola as

m
dv

dt
= kv2 − Fr (4)

Eq. 4 shows that speed has an inverse proportional relationship to the root of the change in time.

The beginning of the vt-graph should show a steep hyperbolic curve as the bicycle’s deceleration

also slows down as the speed decreases. The derivative, acceleration, should decrease with speed.

The resultant force will approach the value of the constant rolling resistance. The graph is expected

to tend towards a linear shape, as it approaches constant deceleration caused by rolling resistance

and negligible air resistance.
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3 Simulation and Model

3.1 Model Equation

Energy and power dissipation in the system will act as a starting point for the coast-down model

equation. There is no change in potential energy on level ground. All kinetic energy will be trans-

ferred into work done against the aerodynamic drag and rolling resistance. Hence, the rate of

change of kinetic energy is equal to the power consumed by the vehicle drag.

d

dt
(KE) = Pa + Pr (5)

where Pa is the power absorbed by air resistance and Pr is the power absorbed by rolling resistance.

The time taken until the bicycle is brought to rest can be expressed as (Appendix A for detailed

derivation)

t0 =

(
2m2

ρACaFr

) 1
2

arctan

[
u

(
ρACa
2Fr

) 1
2

]
(6)

where u is the initial speed of the bicycle.

The rationality of the expression may be evaluated by testing what happens at different limits. As

the:

• area and rolling resistance increase, less time to be brought to rest.

• mass increases, more time to rest.

By introducing the dimensionless parameters, β, τ , and ν, it becomes possible to simplify the

model equation. We define the coast-down parameter as [8]

β = u

(
ρACa
2Fr

) 1
2

(7)

The dimensionless time can be formulated as

τ =
t

t0
= 1−

arctan

[
v
(
ρACa

2Fr

) 1
2

]
arctan[β]

(8)
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Rearranging Eq. 8 to find speed as a function of dimensionless time

v =
u

β
tan[(1− τ) arctan(β)] (9)

Hence, the dimensionless speed ν is given by

ν =
v

u
=

1

β
tan[(1− τ) arctan(β)] (10)

Now that dimensionless parameters have been introduced, further calculations and approximations

are possible to make. They are also relevant in making predictions and applying this model to

different cases (Section 5). The parameters allow comparisons between cases at different scales.

The value of the coast-down parameter can be approximated as 1 for the range of speeds covered

in this exploration [8]. It can be more accurately determined by taking the partial derivative of

Eq. 10 w.r.t. β and t0(= t
τ ) and solving them simultaneously. However, mathematics as such is

beyond the scope of this investigation.

Rearranging Eq. 10 with the approximation that β = 1 (Section 3.5) gives another expression for

the time until v = 0

t0 =
tπ

π − 4 arctan
(
v
u

) (11)

Now, expressions for the drag coefficient and rolling resistance can be derived by dividing and

multiplying equations.

Dividing Eq. 6 by Eq. 7 yields

t0
β

=

(
2m2

ρACaFr

) 1
2

arctan(β)

u
(
ρACa

2Fr

) 1
2

(12)

Therefore

Ca =
2mβ arctan(β)

t0uρA
(13)

Multiplying Eq. 6 with Eq. 7 gives

t0 · β =

(
2m2

ρACaFr

) 1
2

arctan(β) · u
(
ρACa
2Fr

) 1
2

(14)
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Hence

Fr =
mu arctan(β)

t0β
(15)

The air density used was 1.209kgm−3, calculated by

ρ =
p

RdryairT
(16)

It is important to note that integrating the functions in the derivation of Eq. 6 is only possible

when assuming a high Reynolds number and a speed less than 95 kmh−1,ensuring that the rolling

resistance coefficient may be treated as a constant.

3.2 Independent and Dependent Variables

Table 1: Independent and Dependent Variable

Independent variable

Initial speed u / ms−1

Before proceeding with data collection, the bicycle was accelerated

to a fixed speed. Values of initial speed chosen for this investiga-

tion were approximately: 7, 6, 5, 4, 3 (m s−1) with an uncertainty

of ±0.05 km h −1 for direct measurements. The initial speed

was predicted using a real-time speedometer. More accurate final

values were found digitally using Tracker.

Dependent variable

Time taken to decelerate

t / s

The time taken for the bicycle to reach a final speed v was cho-

sen as the dependent variable because it varies with different ini-

tial speeds and is a significant component in calculations. It was

determined both manually and digitally, using a stopwatch and

Tracker. Stopwatch uncertainty is ±0.05s.
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3.3 Constants and Conditions

Table 2: Constants and Conditions

Mass of the Bicycle

and Rider / kg

Mass of the bicycle was determined using a luggage scale with an

uncertainty of ±0.05 kg. Mass of rider was determined using a

bathroom scale with an uncertainty of ±0.05 kg. These were kept

constant as no load was added nor removed.

Distance / m A fixed distance was chosen for consistent measurements of time

taken to decelerate to final speed. This ensured that each trial

was within video frame to be analysed using Tracker. The coast-

down test was conducted on a horizontal pavement, which was

measured to be 70.2 m with an uncertainty of ±0.05 m.

Tyre Pressure / Pa Tyre pressure was controlled as it may impact the results of the

coast-down test. This was done by controlling all affecting factors,

mainly temperature. The bicycle did not travel for long enough

distances for the tyre pressure to vary.

Temperature / ◦C According to Gay-Lussac’s law, pressure is directly proportional to

temperature. As there were no environmental changes throughout

the experiment, temperature remained constant. On the day of

data collection, the temperature in Nordstrand, Oslo was 19◦C

±0.05◦C, determined by a wireless indoor/outdoor thermometer.

Atmospheric Pressure

/ Pa

Atmospheric pressure was used to calculate the air density. Air

density was fixed because the air pressure did not change during

data collection. The value of pressure was 101.30 kPa, obtained

from [10]. This is approximately pressure under standard condi-

tions, thus experimental results can be generalised.
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Cross-Sectional Area /

m2

In all calculations, the cross-sectional area is taken as constant.

It was kept constant by attempting to remain in the same po-

sition throughout the data collection. Additionally, this ensured

that Assumption 3 (See Section 3.5) holds. As the calculation

and measurement of surface area requires mathematics and digi-

tal tools beyond the scope of this investigation, a literature value

was found from [2] according to a comparable position.

Clothing and Surface

Area Material

In order to investigate the variation of aerodynamic drag with

speed, its coefficient must remain constant. No clothing or surface

area material was changed during data collection.

3.4 Tracker and Geogebra

Each trial was filmed and analysed using the video analysis tool, Tracker. The software was used

to eliminate human error and obtain more accurate measurements of the physical quantities than

those made directly. A calibration stick was used to calibrate the video scale, which is ratio of

real distance to image distance in pixels between two points. The “Perspective” filter was used to

ensure the angle from which the camera is placed did not affect the tracking and video analysis.

Geogebra is a digital tool for mathematics, mainly used to plot graphs for each trial. Although

this could also be done in Tracker, Geogebra has tools to create best-fit curves which are clearer

to read and analyse.

3.5 Summary of Assumptions

1. High Reynolds number (turbulent flow) and Fa ∝ v2.

2. Maximum speed does not exceed 95 km h−1 ( 26 m s−1).

3. Both coefficient of aerodynamic drag and rolling resistance are independent of speed.

4. Incline is < 0.5% and the test track can be approximated to be perfectly horizontal.

5. The coast-down parameter has a value of 1.
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4 Experiment

4.1 Set Up and Procedure

Table 3: Equipment and Apparatus

Materials Quantity Absolute Uncertainty Percentage Uncertainty

cPanasonic HC-V720 1 - -

Tripod 1 - -

Fixed distance 70.1 m ±0.05 m ±0.07%

Stopwatch 2 ±0.05 ms -

Speedometer 1 ±0.05 km h−1 -

Nishiki Bushwacker 26”Moun-

tain Bicycle

14.15 kg ±0.05 kg ±0.35%

Rider 52.60 kg ±0.05 kg ±0.10%

Experimental Procedure:

1. Record environmental data

(a) Temperature, atmospheric pressure, wind velocity.

(b) Note if the conditions are significant enough to impact the test results.

2. Carry out the coast-down test

(a) Prior to the set distance within video frame, accelerate the bicycle to the fixed speed

and ensure the speed is constant.

(b) Once the bicycle enters the range, measure the initial speed, and do not pedal or apply

any propulsive force.

(c) Keep the bicycle in a straight path throughout the distance set for the test.

(d) Once the bicycle reaches the end of the distance, measure the final speed and time taken

to travel from start to end.

3. Repeat

(a) Repeat Step 2 once again for each initial speed, this time in opposite direction. Execute

10 trials in total with 5 distinct values of initial speed.

11



Two classmates assisted by standing at the start and end points. Each started and ended the

stopwatches simultaneously. Hence, two values of time were directly collected per trial, and their

harmonic mean was calculated for one single time value.

4.2 Photograph of Equipment

Figure 2 Figure 3

Figure 4: Film recording
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4.3 Experimental Results

Table 4: Raw Data from Direct Measurements

Table 5: Raw Data from Tracker

By comparing the data collected directly and digitally, the impact of human error may be examined.

Raw data shows that time values measured using a stopwatch differ by 1 s depending on whether

the observer is standing at the start or end point.

Each trial was conducted in both directions to account for wind speed. The wind speed measured

in Nordstrand, Oslo was 3 m s−1 and wind gust of 5 m s−1, which are within the constraints given

by [7] for vehicle coast-down testing.

Towards the end of the experiment, the second direction experienced more headwind than the first

direction, which is shown by a greater difference in final speed and time measurements. This effect

is discussed is Section 4.6.
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4.4 Calculations

The time taken for the bicycle to reach a state of rest was calculated using Eq. 6. The time value

used was the harmonic mean of the digital values collected in each trial. The harmonic average

was chosen as it disregards common denominators and ensures each data point weighs the same.

The values of speeds used were their respective arithmetic means because the desired value is the

most popular measure.

Table 6: Time for Coast-Down

Trial Calculated Value of Time For Coast-Down /t0[s]

1 36.376

2 45.883

3 57.737

4 49.545

5 46.582

Using Eqs. 1 and 13, the aerodynamic drag and its coefficient for each trial can be calculated as

shown in Table 7 below.

Table 7: Experimental Aerodynamic Drag and Coefficients

Trial Experimental Drag Coefficient /Ca Experimental Drag /Fa[N ]

1 0.694 11.712

2 0.602 8.493

3 0.0658 4.903

4 0.779 5.614

5 1.096 4.521
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A cross-sectional area of 0.423 m2 was used, which allows a coefficient value of 0.655 to be used as

a reference literature value [2]. Table 7 shows accuracy at high speeds and greater error at lower

speeds. This is discussed in Section 4.7.

Furthermore, the experimental value of rolling resistance was calculated using Eq. 15 as shown in

the table below.

Table 8: Experimental Rolling Resistance

Trial Experimental Rolling Resistance /Fr[N ]

1 11.707

2 8.488

3 4.901

4 5.618

5 4.521

These calculations disagree with parts of the hypothesis, which is examined in the discussion and

evaluation of this model.

4.5 Confirming accuracy

A simple way to evaluate the accuracy of the results is by comparing experimental and rough

theoretical calculations.

Considering Trial 3 as an example.

Fnet = −4.901− 4.903 = −9.804 N

By Newton’s second law

a =
Fnet

m
=
−9.804

66.750
= −0.147 ms−2

Calculating the time taken to decelerate for Trial 3

t =
v − u
a

=
3.919− 5.398

−0.147
= 10.068 s

The experimental time value collected for Trial 3 was 11.450 s, which is comparable to the theoret-

ical value of 10.068 s. Close values indicate that the model successfully calculates certain unknown

values and can distinguish between the two main resistive forces. The experimental value is slightly
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greater due to additional energy losses and errors discussed in Section 4.9.

4.6 Graphical Representation

For each trial, a graph of velocity versus time was plotted in both directions using Tracker and

Geogebra (Appendix B). Tools as such were used to analyse the data and perform power regression

to sketch an accurate graph including velocity values in between data points.

Figure 5: vt-graph for Trial 3 in Direction A.

Figure 6: vt-graph for Trial 3 in Direction B.

The graphs show a hyperbolic curve (exponential decay) for the velocity, illustrating how the

resistive forces experienced by the bicycle are not constant. We see that the derivative of the

velocity-time graph decreases as the velocity approaches zero, which means the bicycle’s decelera-
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tion is also decreasing with time. Therefore, by Newton’s second law, the net force will decrease

too.

Figure 5 and Figure 6 are approximately reflections of each other, which tells us that the envi-

ronmental conditions and wind speed for this trial are close to negligible. The bicycle behaves

approximately the same in both directions in Trial 3. Values used in the calculations for experi-

mental drag and rolling resistance were points taken from this graphical analysis.

Observations can be made by examining at the variation in trials conducted in Direction A.

Figure 7: vt-graph for Trial 1A.

Figure 8: vt-graph for Trial 2A
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Figure 9: vt-graph for Trial 3A

Figure 10: vt-graph for Trial 4A

Figure 11: vt-graph for Trial 5A
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As the initial velocity of the bicycle decreases:

• Initial gradient increases.

• Time taken for coast-down t0 decreases.

• Time taken for the bicycle to reach an approximate constant speed decreases.

• Second derivative increases.

The second derivative of a vt-graph represents the physical quantity jerk, which is the rate at

which the acceleration varies with time. This implies that as initial speed decreases,the net force

reaches a constant value faster. Hence, it is shown that the constant rolling resistance dominates

at low speeds, as aerodynamic drag rapidly becomes insignificant when the bicycle slows down.

4.7 Quantitative Observations

The data collected and calculations only agree with parts of the hypothesis.

For the first three trials, the experimental drag coefficient remains approximately constant. How-

ever, the last two slow trials experience an increase. This can be explained by the noted changes

in environmental conditions. Data collection took a couple hours, and it got windier towards the

last trials. As the wind speed, parallel to the motion of the bicycle, started to increase, the data

collected became less precise and accurate. Thus, insufficient for this model which is sensitive to

environmental factors at this scale.

It may be inferred that without these changes in the surroundings, the drag coefficient would fol-

low the pattern shown by the first three trials and remain constant. Although the hypothesis was

disproved, it is accountable and considered an exception to this case.

Calculations using raw data from Trials 4 and 5 can me made, which support the observation that

random tailwind and headwind caused the inaccurate drag coefficients.

Table 9: Drag Coefficients for Trials 4 and 5

Drag Coefficient / Ca

Trial 4 Trial 5

Direction A Direction B Direction A Direction B

0.553 1.054 0.856 1.387

19



The values in Table 9 show that the experimental coefficient in Direction A is lower than both the

literature value and value calculated for Direction B. This quantitative observation explains why

the experimental values break the trend of a constant drag coefficient. The results in Direction A

imply the bicycle experiences a tailwind, as the wind cancels out parts of the air resistance. On the

other hand, it experiences a headwind in Direction B. Hence, greater values of the drag coefficient

are calculated due to stronger retarding forces.

This experimental flaw in the determination of the drag coefficient makes it difficult to confidently

evaluate the hypothesis for the relationship between air drag and speed. The lack of applicable

literature values of rolling resistance also excludes the possibility to calculate a fixed percentage

error. Available research papers show a range from 2 N to 20 [8], which indicates numerical

accuracy in order of magnitude.

Moreover, the experimental values of rolling resistance (Table 8) disagree with the hypothesis.

The hypothesis was that rolling resistance remains constant, due to a speed-independent rolling

resistance coefficient. Though the last three trials seem to project a constant force, the first two

trials yield much greater values.

This is explained approximation made for the coast-down parameter. For higher speeds, such

as those in trial 1 and 2, the optimal value of the coast-down parameter is not equal to 1. An

operation including more complex mathematics would show more consistent and accurate results.

Thus, I would conclude this model is not suitable for calculating values of rolling resistance at high

speeds.

4.8 Uncertainties

The mass of the bicycle and rider were measured using a luggage scale and bathroom scale respec-

tively. As the masses were added, their absolute uncertainties were added. Hence an uncertainty

of ±0.1 kg was assigned. Thus, the mass is expressed as

m = 66.750 kg± 0.100

66.750
100%

Fluid density is given by

ρ = 1.209 kg m−3 ± 0.050

1.209
100%
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The uncertainty for the final results depend on speed and time taken for coast-down. The aerody-

namic drag coefficient and rolling resistance for Trial 3 is written as

Ca = 0.658± 0.085

0.658
100%

and

Fr = 4.901N ± 0.043

4.901
100%

Table 10: Percentage Uncertainty and Error for Drag Coefficients

Trial Percentage Error [%] Percentage Uncertainty [%]

1 5.95 11.712

2 8.09 8.493

3 0.46 4.903

4 15.57 15.37

60.92 8.06

5 30.69 9.88

111.76 6.09

Coefficients from Trials 4 and 5 are disregarded as the percentage error exceeds the percentage

uncertainty. Therefore the first three trials are considered the only successful trials.

The percentage error was calculated by

% error =
|experimental value - literature value|

literature value
100%

4.9 Sources of Error

4.9.1 Systematic Errors

The main sources of systematic errors are equipment and procedure. They impede the experimental

accuracy and cannot be reduced through repeated trials. However, acknowledging them help

explain the results of the experiment.

1. Non-Perfect Level Ground

The model used in this investigation assumes a perfectly horizontal ground. However, there

was a small bump in the middle of the pavement, causing an additional loss in energy and
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slight change in rolling resistance. Rolling resistance is only constant if the surface remains

the same.

2. Camera Angle and Video Quality

The camera used recorded at 60 fps. A higher rate would increase experimental accuracy as

more data points would be collected and plotted on the graph.

3. Additional Frictional Losses

There are always additional losses of internal energy, especially as the apparatus was a bicycle.

These were not accounted for and lead to an increase in experimental error.

4.9.2 Random Errors

Random errors decrease experimental precision. Several trials were carried through for each initial

speed and the values were averaged for more accurate results.

1. Changes in Wind Speed/Random Gusts

There were environmental changes which affected each individual reading. Towards the

final trials, qualitative observations and data collected show significant wind velocity, which

resulted in a greater difference in the net force acting on the bicycle in each direction.

2. Positioning

The position and cross-sectional area of the rider varied throughout the experiment. Although

it was attempted to remain in a similar position, this resulted in less precise data collection.

3. Human Error

In measurements made directly with the stopwatches and speedometer, random errors occur

from a too slow or fast reaction time. When collecting data through digital analysis, human

error also occurs as I manually tracked the bicycle in each video frame.
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5 Evaluation and Conclusion

5.1 Predictions and Applications

Ideally, this model could be used to calculate the aerodynamic drag and rolling resistance. However,

from the results obtained in this investigation, it seems unfavourable to use the mathematical

equation for rolling resistance. Although the model’s graphical representation does show a constant

rolling resistance, calculations did not yield consistent results.

However, an alternative application of the model can be made to predict the bicycle’s behaviour at

different speeds. At speeds within the limits which allow the drag coefficient and rolling resistance

to be treated as constants, Newton’s second law may be used to calculate the net force. Eq. 12

and Eq. 1 can be used to determine the aerodynamic component. Thus, one can successfully

distinguish between air and rolling resistance by

Fnet = Fa + Fr (17)

On the other hand, it may also be necessary to first calculate the ideal value for the coast-down

parameter. At higher speeds, the approximation of β = 1 will not hold, resulting in inaccurate

results.

One can also apply this model different cases with additional retarding or tractive forces. Consid-

ering the case of an inclined path taken. By finding the vehicle’s acceleration, Newton’s second

law can be used to calculate the net force acting on the body. The drag contributions may be

determined by

Fnet = Fa + Fr − Fg (18)

The component of the weight is calculated using the angle of inclination. Therefore, only one of

the resistive forces must be calculated to determine the other. An advantage of this application is

that the model will be less sensitive to environmental factors, such as small wind speeds.

5.2 Strengths and Weaknesses

Although the strengths and weaknesses have been briefly mentioned in the discussions of observa-

tions and applications, they are important to recognise in order to make improvements.
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5.2.1 Strengths

• Simplified and accessible

The model has applied a complex procedure for cars and larger vehicles to the case of a

bicycle. It is an educational experiment which does not require expensive or inaccessible

equipment. Still, it provides thorough understanding of how a bicycle responds to motion

through a fluid.

• Everyday application of physics

The model reflects observations and expectations and clearly demonstrates the universality

of physics. The results obtained from this investigation can be generalised and recognised in

day-to-day cycling cases.

• Experimental procedure

The experimental procedure is simple and feasible, as well as it was consistent and generally

precise. A clear strength was conducting the experiment in both directions to account for

external wind.

5.2.2 Weaknesses

• Sensitive to small changes

The model is weak when it experiences any environmental wind resistance. It must be con-

ducted under perfect conditions to yield desired results. This may be improved by conducting

the experiment at higher speeds; however, it would require mathematical optimisation of the

coast-down parameter. This may be improved by conducting the experiment down a slope,

as the wind speed becomes negligible.

• Mathematical Flaws

As frequently mentioned, the greatest shortcoming of the model lies in its simplification

and the numerical approximation of the coast-down parameter. This results in particular

weaknesses when calculating the rolling resistance. Improvements to this can be made by

deriving another equation for the optimal value of the coast-down parameter.
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5.3 Conclusion

Despite certain trials having a large uncertainty, the model derived in this investigation successfully

managed to distinguish between the components of bicycle drag. Not all results agreed with the

hypothesis but were explicable by considering the model’s weaknesses. Final results showed an

accurate drag coefficient value of 0.0658±0.0003 with an error of ±0.0032.

One can precisely distinguish between the values with negligible environmental factors and careful

experimental procedure. Although, mathematical limitations challenge the potential of this model,

it may be used to make general rough estimations of the bicycle drag components.
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Appendices

A Derivation of Equation 6

We use conservation of energy as an anchor and write it as the equation

d

dt
(KE) = Pa + Pr (I)

Using the chain rule and basic differentiation for the LHS w.r.t. time

d

dt
(KE) =

d

dt
(
1

2
mv2)

=
d

dv
(
1

2
mv2) · dv

dt

= mv · dv

dt

(II)

Obtained from Eq. 1, while keeping Fr as a constant as it does not vary with speed

mv · dv

dt
= v(−1

2
ρACav

2 − Fr) (III)

Thus

−mdv

dt
=

1

2
ρACav

2 + Fr (IV)

Solving the differential equation by rearranging and integrating both sides gives

∫ u

v

− 1
ρACav2

2m + Fr

m

dv =

∫ t

0

1 dt (V)

Obtaining

−

√
2m arctan

( √
ρACav√
ρACaFr

)
√
ρACaFr

= t+ C (VI)

Therefore

t+ C = −
(

2m2

ρACaFr

) 1
2

arctan

[
v

(
ρACa
2Fr

) 1
2

]
(VII)

To determine the integration constant, we solve Eq. VII for when v = u and t = 0

C = −
(

2m2

ρACaFr

) 1
2

arctan

[
u

(
ρACa
2Fr

) 1
2

]
(VIII)
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Substituting for C in Eq. VII gives

t =

(
2m2

ρACaFr

) 1
2

[
arctan

[
u

(
ρACa
2Fr

) 1
2

]
− arctan

[
v

(
ρACa
2Fr

) 1
2

]]
(IX)

Thus, Eq. 6 is obtained by taking v = 0

t0 =

(
2m2

ρACaFr

) 1
2

arctan

[
u

(
ρACa
2Fr

) 1
2

]
(6)
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B Graphs

(a) Direction A (b) Direction B

Figure 12: Trial 1

(a) Direction A
(b) Direction B

Figure 13: Trial 2
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(a) Direction A
(b) Direction B

Figure 14: Trial 3

(a) Direction A
(b) Direction B

Figure 15: Trial 4
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(a) Direction A
(b) Direction B

Figure 16: Trial 5
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C Raw Data from Tracker

32


