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1 Introduction

Pendulums are a common object of fascination by physicists and mathematicians.

The history of the study of pendulums perhaps begins with Galileo’s observa-

tions on the relation between the duration of a swing, or period, and the swing

amplitude, and stretches through fields such as fractal geometry or music, up to

quantum mechanics. [Baker and Blackburn 2005, pp. 1-6] Mathematically, pen-

dulums can be reduced to models, even if the complexity of the real world results

in the impossibility of perfectly describing the system through equations and func-

tions. Even so, it is fundamental for the study of these objects to devise models

that help explain how they behave.

Furthermore, the application of mathematics to real-world problems helps explore

the behaviour of the world that surrounds us, and often opens up new areas of

exploration within mathematics themselves. Due to this, mathematics and physics

are intrinsically linked; while physics needs mathematics to describe phenomena,

mathematics benefits from physics as it provides challenging problems that require

the introduction of new mathematical concepts, expanding mathematics itself.

For this reason, the problem of pendulums is interesting. There is a simple solution

to the problem; in fact, this is the solution that is taught in high school physics

courses. Nonetheless, this basic model fails to contain the intricacies of the mo-

tion of a pendulum. Those can be approached by discarding approximations, but

the problem suddenly becomes more complicated, and begs the introduction of

mathematical concepts that extend beyond high school curriculums.

1



Mathematics Extended Essay: Modelling the behaviour of a pendulum

1.1 Methodology

In order to explore the concept of a pendulum, some of the knowledge from the

physics course has been applied, especially regarding the forces that act on the

system and the concept of simple harmonic motion. Bibliographic resources have

been employed in order to understand and explain mathematical concepts such as

differential equations, and apply them to the problem.

So as to put the mathematical models into practice and evaluate their behaviour

with diverse parameters, I simulated them through phase portraits (see section 3.4)

using Python. The source code of all the simulations can be found in appendix A.

The general approach that I will follow is:

1. Understand the problem: analyse characteristics and types of pendu-

lums, identify the different quantities that interact within them, and focus

on specific approaches.

2. Introduce the mathematical background: provide a sufficient under-

standing of differential equations, which are needed for the approaches iden-

tified previously.

3. Develop the models: develop the different mathematical models by ap-

plying the understanding of pendulums and the tools provided by differential

equations.

4. Analyse the models critically: draw conclusions from the models, and

identify which models are most fitting for different situations.

2
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2 First approach to pendulums

2.1 What is a pendulum?

Figure 1: Pendulum.

A pendulum is a system formed by a mass that swings from a string or rod in

a periodical motion. Figure 1 shows a diagram of a pendulum, where θ is the

amplitude and ` is the length of the string or rod. Pendulums can be classified

according to three properties: [Baker and Blackburn 2005, p. 9]

1. An ideal or simple pendulum has a mass that is concentrated in one single

point of space and has a string or rod that is inelastic, i.e. does not stretch or

compress. The opposite is a real pendulum, where the mass and elasticity

of the string or rod are considered.

2. An approximated pendulum applies a mathematical approximation, thus

simplifying the calculations; it is only valid for small angles θ. The opposite

is an exact pendulum, which does not approximate and is valid for all

angles θ but does not allow for a simple analytical solution.

3
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3. An undamped pendulum is one where no energy is lost, so the pendulum

continues its motion permanently. The opposite is a damped pendulum,

where energy is lost due to friction and the motion slows down as time passes.

Real pendulums, due to their complexity, are out of the scope of this paper, but

both approximated and exact pendulums, and both undamped and damped pen-

dulums, will be considered.

2.2 The forces acting on pendulums

Figure 2: Simple force diagram of a pendulum.

A way to understand the motion of a pendulum is to consider the forces that dir-

ect its movement, as shown in figure 2. The simplest pendulum is one exclusively

driven by a constant force of weight ~W that always points downwards. By consi-

dering a frame of reference based on the bob or mass of the pendulum, the vector

~W can be separated into its components ~Wx and ~Wy. To understand how these

two forces direct the motion of the pendulum, we shall apply Newton’s laws of

motion, shown in figure 3.

4
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Newton’s laws of motion:

1. Newton’s First Law : A body will remain at rest or moving with
constant velocity unless acted upon by an unbalanced force.

2. Newton’s Second Law : The acceleration of a body is proportional
to the force applied and inversely proportional to its mass. Often
stated as ~F = m~a.

3. Newton’s Third Law : If body A exerts a force on body B then
body B will exert an equal and opposite force on body A.

Figure 3: Newton’s laws of motion. [Hamper 2014, pp. 56-67]

The first law helps understand that there must be an unbalanced force acting upon

the mass, because the pendulum is neither at rest nor moving at constant velocity.

Since the motion of the mass is in the same direction as ~Wx, we may assume that it

is the unbalanced force of the system. The vertical component ~Wy must therefore

be balanced by an opposite force of tension by the string or rod.

We may now drop the vector notation since the unbalanced force only acts on the

horizontal axis for the chosen frame of reference; it will be positive when pointing

to the right and negative when pointing to the left.

The second law implies that the unbalanced force, Wx, must be equal to the mass

of the bob multiplied by its acceleration, Wx = ma. Given that the weight W of

a body in a gravitational field is equal to its mass multiplied by the gravitational

acceleration (W = mg), from simple trigonometry we find that Wx = W sin θ, or

Wx = mg sin θ. Combining:

−ma = mg sin θ (2.1)

5
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a = −g sin θ since m 6= 0 (2.2)

The negative sign represents the fact that θ, and therefore sin θ, always point in the

opposite direction to a; when the pendulum swings to the right, making θ positive,

a will be negative so that the pendulum slows down and eventually swings back

to the left.

Equation (2.2) provides a relationship between acceleration and angle. In order

to express the acceleration in terms of θ, we need to consider circular motion. In

circular motion, from the definition of a radian it follows that a distance over a

circular arc of length x is equal to the radius of such circular arc r multiplied by

the angle of the arc θ. In a pendulum, which follows a circular path, r = `, so:

x = `θ (2.3)

d2x

dt2
= `

d2θ

dt2
differentiating twice with respect to t (2.4)

a = `θ̈ expressing derivatives as quantities (2.5)

Equation (2.5) enables us to replace a in equation (2.2) by a quantity directly

related to θ, its second derivative θ̈. This quantity is called angular acceleration,

because it expresses the rate of change in angular velocity over time. In turn,

angular velocity, dθ
dt

or θ̇, expresses the rate of change in angle θ over time. Thus,

substituting (2.5) into (2.2):

`θ̈ = −g sin θ (2.6)

θ̈ +
g

`
sin θ = 0 rearranging and dividing by ` (2.7)

6
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Equation (2.7) leads us to an impasse. The unknown θ, a function of t, appears

as both itself and its second derivative, eliminating the possibility of isolating θ on

one side of the expression. Different approaches to this obstacle will be explored

in further sections.

3 Differential equations

Equation (2.7) is the differential equation that describes the behaviour of a simple

exact pendulum. Differential equations are a type of equation in which both a

function and any of its derivatives are unknown. An example of a differential

equation is one where the rate of change of a function is proportional to the function

itself:

y′ = ry (3.1)

The type of differential equation that concerns pendulums is ordinary differential

equations (ODEs), which contain only ordinary derivatives, in the form y(n) using

Lagrange’s notation,
n
y in dot notation (the preferred notation throughout this

paper), or dny
dtn

using Leibniz’s.

3.1 Ordinary differential equations

Ordinary differential equations can be divided into linear and non-linear, a dis-

tinction which is particularly important in pendulums. Linear ODEs are typically

easier to solve analytically, and are characterised by being a linear combination of

7
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a function and its derivatives: [Nagy 2021, p. 5]

an
n
y + an−1

n−1
y + an−2

n−2
y + . . .+ a2ẏ + a1y + a0 = 0 (3.2)

The quantities ax may be functions of the dependent variable t, but not of the

function y itself; they may also be real numbers.

Differential equations are further identified by their highest derivative; that is, the

equation ÿ+2ẏ = 3 is of second order because its highest derivative is ÿ. The order

of an ODE helps determine which methods to apply for resolution. [Zill 2018, p.

4]

Differential equations are often difficult to solve. In order to demonstrate how an

ODE may be approached, let us find a general solution for a first order linear ODE

in the form y′ = ay + b, where t 7→ y and a, b ∈ R: [Nagy 2021, pp. 7-8]

y′ = a

(
y +

b

a

)
by factorising a (3.3)(

y +
b

a

)′
= a

(
y +

b

a

)
by considering that

(
y +

b

a

)′
= y′ (3.4)

a =

(
y + b

a

)′(
y + b

a

) (3.5)

a =
ȳ′

ȳ
by replacing y +

b

a
by ȳ (3.6)∫

a dt =

∫
ȳ′

ȳ
dt integrating on both sides (3.7)

at+ C = ln|ȳ| (3.8)

ȳ = ±eat+C (3.9)

y +
b

a
= ±eat+C by replacing back ȳ = y +

b

a
(3.10)

y = ±eCeat − b

a
(3.11)

8
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y = ceat − b

a
where c ∈ R (3.12)

The function y = ceat − b
a
, with c being an arbitrary constant, is the solution of a

first order linear ODE in the form y′ = ay + b. If, for example, we apply this to

equation (3.1), we observe that it is a general exponential function:

y′ = ry (3.13)

a = r, b = 0 (3.14)

y = cert − 0

r
(3.15)

y = cert (3.16)

And, in fact, exponential functions are defined by the property we expressed in

the differential equation: the rate of change is proportional to the function itself.

3.2 Second order linear ODEs

Equation (2.7) is a second order ODE. It is not a linear combination of the function

θ(t) and its derivatives, since θ appears inside another function, sin θ; therefore, it

is a non-linear ODE. However, by approximating sin θ to θ, as will be demonstrated

in section 4, equation (2.7) can be transformed into a second order linear ODE.

Thus, it will be useful to explore how they are solved.

3.2.1. First approaches

Let us start with a very simple case:

ü+ u = 0 where u is a function of x (3.17)

9
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It is useful to think of this problem as the question: which function, when differen-

tiated twice, yields something which cancels out with itself? A solution could be a

sine function, because the derivatives of sinx cycle between cosx, − sinx, − cosx,

back to sin x, etc. Thus, substituting u = sinx into equation (3.17):

(sinx)′′ + sinx = − sinx+ sinx = 0 (3.18)

The function cos x follows the same derivative cycle, and thus is also a solution:

(cosx)′′ + cosx = − cosx+ cosx = 0 (3.19)

Furthermore, any expression where the solution function is multiplied by any real

arbitrary factor c is also a solution:

[cf(x)]′′ + cf(x) = c[f(x)]′′ + cf(x) (3.20)

= c[f ′′(x) + f(x)] (3.21)

= c · 0 = 0 (3.22)

We might observe that this is because of the property of derivatives where d
dx
ku =

k d
dx
u, so the constant may always be factored out. Similarly, the property of

derivatives where d
dx

(u + v) = d
dx
u + d

dx
v implies that for any number of solutions

yn, any linear combination of them will also be a solution. [Shenoy 2012] Let us

show this for equation y′′ + py′ + qy = 0 with solutions y1 and y2:

y′′1 + py′1 + qy1 = 0 and y′′2 + py′2 + qy2 = 0 (3.23)

(c1y1 + c2y2)
′′ + p(c1y1 + c2y2)

′ + q(c1y1 + c2y2) (3.24)

= c1(y
′′
1 + py′1 + qy1) + c2(y

′′
2 + py′2 + qy2) (3.25)

10
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= c1 · 0 + c2 · 0 = 0 (3.26)

Therefore, c1y1+c2y2, a linear combination of solutions y1 and y2, is also a solution.

This principle is called principle of superposition [Rotz 2013], and is useful when

considering a more general case of a second order linear ODE.

3.2.2. Generalisation

Let us now consider a more general case:

y′′ + py′ + qy = 0 (3.27)

We may try to approach it through exponential functions, given that their derivat-

ives resemble them too, just like with trigonometric functions. If y = erx, y′ = rerx

and y′′ = r2erx:

r2erx + prerx + qerx = 0 (3.28)

r2 + pr + q = 0 since ea 6= 0 (3.29)

Polynomial (3.29) is called the characteristic polynomial of the differential equa-

tion. [Nagy 2021, pp. 102-103] If it has solutions r1 and r2, in terms of p and q,

then equation (3.27) has solutions y1 = er1x and y2 = er2x. From the principle of

superposition, y = c1e
r1x + c2e

r2x is also a solution.

If r1 and r2 are complex roots in the form a+bi and a−bi, then from the conjugate

root theorem the solutions y1 and y2 will be:

y1 = e(a+bi)x (3.30)

11
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y2 = e(a−bi)x (3.31)

Using Euler’s formula, eix = cosx+ i sinx:

y1 = eaxeibx = eax(cos bx+ i sin bx) (3.32)

y2 = eaxe−ibx = eax(cos bx− i sin bx) (3.33)

Since we are not looking for complex solutions, we may apply the principle of

superposition with y1 and y2 to find real solutions. Adding y1 and y2 results in the

following:

y1 + y2 = eax(cos bx+ i sin bx) + eax(cos bx− i sin bx) (3.34)

= eax(cos bx+ i sin bx+ cos bx− i sin bx) (3.35)

= 2eax cos bx (3.36)

Hence, 2eax cos bx and therefore eax cos bx is a solution. [Dawkins 2018] Replicating

the process for the subtraction of y2 from y1 results in 2ieax sin bx being a solution,

and thus eax sin bx too. We may express a general real solution as:

eax(c1 cos bx+ c2 sin bx) (3.37)

3.3 Initial values

Constants c1 and c2 are related to the initial values of the solution function and its

derivatives. In section 3.2.1, we observed that second order differential equations

in the form ÿ + y = 0 had solutions y = sinx and y = cosx. From the principle

of superposition, y = c1 cosx + c2 sinx is a solution. If we define y(0) = y0

12
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and ẏ(0) = ẏ0, we may conclude that y0 = c1 cos 0 + c2 sin 0 = c1, and ẏ0 =

−c1 sin 0 + c2 cos 0 = c2. Thus, we express the solution as:

y = y0 cosx+ ẏ0 sinx (3.38)

This observation is important, because it will allow us to interpret the constants

c1 and c2 when initial values are determined.

3.4 Phase portraits

A phase portrait of a system is a representation of all its possible states and

developments. It is a useful tool to understand the behaviour of a system that is

described through a differential equation, especially when there exists no analytical

solution for it. Phase portraits depict trajectories of a system, that is, directions

in which it will evolve given a specific state. They are a sort of simulation of what

would happen in every possible initial state as time increases.

Phase portraits will be used throughout this paper to help extract conclusions from

the different models. They will be shown as vector fields, sometimes with solution

curves plotted to better understand the behaviour of the motion.

4 An approximated pendulum

As discussed above, one possible way to approach the problem is to approximate

sin θ as θ. This is helpful because it allows us to consider the motion as simple

harmonic motion, and to solve equation (2.7) analytically by making the differ-

ential equation linear.

13
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4.1 Simple harmonic motion

Simple harmonic motion is a periodic motion where a body oscillates around an

equilibrium position. SHM is characterised by the fact that the acceleration to-

wards the equilibrium position is proportional to and of opposite sign as its dis-

placement from the equilibrium position.

a ∝ −x (4.1)

The negative sign means that when the body moves away from the equilibrium

position, the acceleration will point to the opposite direction, towards the equilib-

rium position. [Hamper 2014, p. 151] Applying the approximation to a pendulum

proves a close resemblance to SHM in small angles. Using the approximation,

sin θ ≈ θ, on equation (2.7):

θ̈ = −g
`
θ (4.2)

a

AÀ
= −g

`

x

AÀ
(4.3)

a = −g
`
x =⇒ a ∝ −x (4.4)

4.2 The small angle approximation

The small angle approximation is a mathematical approximation of trigonometric

functions. Figure 4 helps gain an understanding of it:

14
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Figure 4: Squeeze theorem with trigonometric functions.

Theorem. Small angle approximation.

From figure 4 we may deduce that, for small values of the angle x,

sinx ≤ x ≤ tanx. Dividing by sinx on all three functions, 1 ≤ x
sinx
≤

cosx.

If 1 ≤ x

sinx
≤ cosx in an interval containing x = 0, (4.5)

and if lim
x→0

1 = 1 = lim
x→0

cosx, (4.6)

then lim
x→0

x

sinx
= 1 (4.7)

Rearranging statement (4.7), for x→ 0, sinx ≈ x.

This approximation is relatively accurate for small angles; to show this, let us

calculate sin θ for θ = π
12

with three significant figures:

sin θ = sin
π

12
= 0.259

θ =
π

12
= 0.262

15
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The difference, which in this example is of slightly over 1%, is small enough to be

neglected with small angles.

4.3 A differential approach to SHM

We may proceed to solve our approximated differential equation through the gen-

eral method derived in section 3.2.2:

Differential equation: θ̈ +
g

`
θ = 0 (4.8)

Characteristic polynomial: r2 +
g

`
= 0 (4.9)

Roots of the polynomial: r = ±
√
g

`
i (4.10)

Constants a and b for r = a± bi: a = 0, b =

√
g

`
(4.11)

Substitution in the formula: θ(t) = e0t(c1 cos

√
g

`
t+ c2 sin

√
g

`
t) (4.12)

Simplification and constants: θ(t) = θ0 cos

√
g

`
t+ θ̇0 sin

√
g

`
t (4.13)

Equation (4.13) provides a simple harmonic model for an undamped approxim-

ated pendulum. Figure 5 shows the graph of the function with no initial velocity

θ̇0, where maxima represent the maximum swing to the right, and minima do so

to the left. As is to be expected, the gradient of the curve, that is, the angular

velocity, has maximum magnitude when the angle is zero, which means that the

bob stops moving down and starts moving up.

16
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Figure 5: Graph of θ(t) in simple harmonic motion.

We may create a phase portrait of the differential equation, with the two parame-

ters, angle and angular velocity, as axes. They may be shown through a vector

field, where the magnitude of the vector at a particular point will express the

instantaneous rate of change of both quantities, that is, how they will change.

In order to create the phase portrait, with axes to represent θ0 and θ̇0, it is necessary

to perform a change of variable to obtain separate expression for the derivative of

each of the variables. Thus, θ = θ1 and θ̇ = θ̇1 = θ2:

θ̈ +
g

`
θ = 0 differential equation (4.14)

θ̇2 +
g

`
θ1 = 0 change of variables (4.15)


θ̇1 = θ2

θ̇2 = −g
`
θ1

system of equations (4.16)

17



Mathematics Extended Essay: Modelling the behaviour of a pendulum

From that, given a point (θ1, θ2), its derivative as a vector will be

[
θ2

− g
`
θ1

]
. Figure

6 shows the phase portrait.

Figure 6: Phase portrait of a simple approximated pendulum.

Some conclusions can be extracted from this phase portrait:

1. The pendulum does not lose energy, because after a complete swing it

returns back to the original point.

2. The angular velocity has maximum magnitude when the angle is zero,

which means that the pendulum moves the fastest when at its lowest point.

3. The angle has maximum magnitude when the angular velocity is zero,

so the velocity vector changes its direction and therefore its sign when the

pendulum reaches its highest point on either side of the motion.

18
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4.4 A damped approximated pendulum

Recalling the force diagram in figure 2, the unbalanced force of an undamped

pendulum is the horizontal component of weight. We may now introduce a force

of friction proportional to the velocity of the pendulum: [Quiroga and Ospina-

Henao 2017, pp. 3-4]

Ffric = −bv (4.17)

Where b is a friction coefficient, and v is the linear velocity of the pendulum. Note

that the negative sign indicates that the force always acts opposite to the velocity,

because it slows down the motion. We may replace the linear velocity by the

angular velocity:

x = `θ (4.18)

dx

dt
= `

dθ

dt
differentiating with respect to t (4.19)

v = `θ̇ (4.20)

Ffric = −b`θ̇ (4.21)

19
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Figure 7: Force diagram of a damped pendulum.

By reintroducing the force diagram adding the new force, figure 7, the total unbal-

anced force is the sum of all the forces that act on the body, namely the horizontal

component of the weight, Wx, and the friction, Ffric:

Ftotal = ma = Wx + Ffric (4.22)

ma = −mg sin θ − b`θ̇ (4.23)

m`θ̈ = −mg sin θ − b`θ̇ from (2.5) (4.24)

θ̈ +
b

m
θ̇ +

g

`
sin θ = 0 (4.25)

θ̈ +
b

m
θ̇ +

g

`
θ = 0 approximating (4.26)

Using the characteristic polynomial, r2 + b
m
r + g

`
= 0, and finding its roots, r =

− b
2m
± 1

2

√(
b
m

)2
− 4g

`
, the solution to the differential equation will be:

θ (t) = e−
b

2m
t

c1 cos t
1

2

√(
b

m

)2

− 4
g

`
+ c2 sin t

1

2

√(
b

m

)2

− 4
g

`

 (4.27)

20



Mathematics Extended Essay: Modelling the behaviour of a pendulum

Once again, given initial values θ(0) = θ0 and θ̇(0) = θ̇0, we interpret the constants

as c1 = θ0 and c2 = θ̇0. Figure 8 shows a possible graph of the solution function,

with the same interpretation for the maxima and the minima as in figure 5.

Figure 8: Graph of θ(t) in damped motion.

There is one clear flaw with this model: even though we are accounting for some

energy loss, there is an asymptote for θ = 0, which means that while the curve

crosses zero infinite times, and gets closer and closer to zero, it never stops at it.

Thus, this model is of a pendulum that loses energy but never all of it, so it never

stops.

Another way of representing this model is again through a phase portrait, where

given initial values for θ0 and θ̇0, the rate of change, that is, the expected direction

of the curve as time increases, is shown through a vector field. Through the method
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in (4.16):


θ̇1 = θ2

θ̇2 = −g
`
θ1 − b

m
θ2

(4.28)

Figure 9: Phase portrait of a damped approximated pendulum.

Figure 9 shows the phase portrait with one solution curve. The solution curve

spirals towards zero as it loses energy exponentially (due to the first factor of the

function, eat), but never reaches that point.
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5 An exact pendulum

Bringing back our initial differential equations for undamped and damped pendu-

lums:

Undamped: θ̈ +
g

`
sin θ = 0 (5.1)

Damped: θ̈ +
b

m
θ̇ +

g

`
sin θ = 0 (5.2)

Since these equations are not linear, we have no tools to solve them analytically.

Nonetheless, as shown previously, phase portraits contain as much information as

plotted functions, and we can draw conclusions from them. Therefore, the exact

pendulum will be approached through phase portrait simulations, and solution

curves plotted on them.

5.1 An undamped exact pendulum

We can once again separate the differential equation for the undamped exact pen-

dulum, (5.1), into a system of equations through a change of variables, which will

help us create its phase portrait. Replicating the process in equation (4.16):


θ̇1 = θ2

θ̇2 = −g
`

sin θ1

(5.3)

Plotting the phase portrait as a vector field, where a vector at point (θ1, θ2) is

defined by

[
θ2

− g
`
sin θ1

]
, results in figure 12.
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Figure 10: Phase portrait of an undamped exact pendulum.

This phase portrait displays more complexity than the approximated ones. Some

remarkable features include:

1. It is periodic. Every 2π radians along the horizontal axis, the vector field

will be the exact same.

2. It works for any angle, which is especially noticeable for θ > π or θ < −π,

where the approximated pendulum predicted a strong trend towards the

origin, whereas a real pendulum will move towards the nearest stable point.

3. There are more points where the vector magnitude is zero than solely the

origin. This hints at different points of equilibrium, or no motion:

(a) The unstable equilibrium points correspond to multiples of π (in

red), where the pendulum is at the top, and are therefore unstable, be-

cause any external disturbance brings the pendulum into circling about

forever.
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(b) The stable equilibrium points correspond to multiples of 2π (in

blue), where the pendulum is at the bottom, and are therefore stable,

because any external disturbance sets the pendulum to oscillate slightly

about the stable point.

Figure 11: Phase portrait of an undamped exact pendulum
with various solutions plotted.

Some solution curves with different initial conditions are shown in figure 11:

• Curve A behaves similarly to an undamped approximated pendulum, be-

cause it has a low initial angular velocity, so its maximum angle is small.

• Curve B does not have enough initial velocity to circle around, and while it

approaches the top on every swing, it never reaches it and falls back towards

its initial point.

• Curve C gets very close to stopping (graphically, approaching the horizontal

axis) every time it passes through the top, but it manages to ‘overcome’ it

and circles around forever.
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• Curve D behaves like curve C, except it has higher initial angular velocity,

and so it circles around forever, only slightly slowing down when it is at the

top of its motion.

5.2 A damped exact pendulum

Once again, parallel to the method in (4.16), we plot the phase portrait (figure 12)

from the following system of equations:


θ̇1 = θ2

θ̇2 = −g
`

sin θ1 − b
m
θ2

(5.4)

The vector field will follow that a vector at point (θ1, θ2) is defined by

[
θ2

− g
`
sin θ1− b

m
θ2

]
,

resulting in figure 12.

Figure 12: Phase portrait of a damped exact pendulum.

Performing a similar analysis to the previous section:
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1. It is again periodic.

2. There is a trend towards stable equilibrium points, and away from un-

stable equilibrium points.

3. The stable equilibrium points can now be called attractors and the unstable

equilibrium points repellors: [Weisstein 2021]

(a) Attractors are points towards which neighbouring states approach as

the system evolves.

(b) Repellors are points from which neighbouring states move away as the

system evolves.

Figure 13: Phase portrait of a damped exact pendulum
with various solutions plotted.

Plotting again some solution curves results in figure 13:

• Curve A starts with certain initial velocity, and oscillates from right to left

in increasingly small swings without ever circling around completely.
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• Curve B has enough initial velocity to circle around once, but gets trapped

in the next cycle and so after the first full circle it starts to behave like curve

A.

• Curve C starts with a somewhat high initial angle and no velocity, and it

oscillates with a decreasing swing angle.

The main conclusion drawn from approximated undamped pendulums, that re-

ferred to the asymptote on the solution curve, is also valid here. The attractor

points are asymptotic too, meaning that a pendulum following this model will the-

oretically never stop, despite its angle of swing being always decreasing. This sets

it distinctively apart from real pendulums, which of course stop after some time.

6 Conclusion

Even the simplest pendulums are complex systems. The four models contemplated

in this paper are increasingly close to a real pendulum, but ultimately fail in fully

predicting its motion. In order to capture the value of every model, we may consider

their strengths and weaknesses. Thus, the question ‘How can a pendulum be

modelled mathematically?’ has been answered in four ways:

1. Approximated undamped model: this model has proven to be accurate

for small angles of swing and small timespans where damping is negligible.

(a) Strengths: it is very convenient for calculations because it requires

computing a single trigonometric function.

(b) Weaknesses: it fails to predict the behaviour of a real pendulum when

the angle of swing is not small or when longer timespans are considered.
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2. Approximated damped model: this model improves one of the flaws of

the previous one by accounting for friction and thus energy loss.

(a) Strengths: it is useful when longer timespans are considered, and it

also has an exact analytical solution.

(b) Weaknesses: it once again fails to predict the motion of a pendulum

with bigger swing angles.

3. Exact undamped model: this model improves on the first one by discard-

ing approximations, and resembles a real pendulum more closely than the

previous models.

(a) Strengths: it is accurate for any set of initial conditions, and therefore

can be used in a wider range of cases.

(b) Weaknesses: it cannot be expressed analytically by a single function;

instead, we rely on simulated phase portraits to understand it. It also

suffers from not accounting for energy loss, which limits its use to short

timespans (or a perfect vacuum with no friction on the axis of rotation,

a rather unlikely situation).

4. Exact damped model: this model is the closest to real conditions, due to

accounting for both bigger angles and energy loss.

(a) Strengths: it is accurate for any angle and it accounts for a force of

friction, which is present in real pendulums; it can be used with both

big angles and long timespans.

(b) Weaknesses: again, it cannot be expressed analytically; and due to

the asymptotic nature of the attractor points in the phase portrait, it

theoretically never stops, therefore failing to contain the complexity of

a real pendulum.
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Nevertheless, it can be stated that there is a clear progression in the level of

accuracy across the four models. Comparing the initial one with the last one, the

first has a very narrow scope where it is valid, whereas the latter applies to a much

wider range of cases.

It is also interesting to reflect on the fact that pendulums seem to be a very simple

system, with very few forces acting on it, yet they seem so elusive when it comes

to modelling them mathematically. Even a complex model, like the exact damped

model, is logically inconsistent with the real world. Another interesting notion

in mathematics which intersects with the topic of this paper is chaos. Double

pendulums are commonly used as an example of chaotic systems, where a small

change in initial condition completely alters the behaviour of a system [Levien and

Tan 1993, p. 1044], and by introducing concepts such as attractors and repellors

we have contemplated some hints of unstable and potentially chaotic behaviours

in single pendulums.
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Appendices

A Source code for the simulations

The following code is inspired by and contains parts of the approach at [Kitchins

2013], which is distributed under a Creative Commons CC BY-SA 4.0 licence that

allows for redistribution and transformation as long as appropriate credit is given.

Some of my additions include variables such as gravitational acceleration, mass,

length and friction; many aesthetic changes were also made to it; and comments

were added on almost every line of code to facilitate its comprehension. Some

functional changes were also made to make the code more adaptable to the six

simulations that were run; this includes different variable treatment (such as con-

verting a set of single variables to an indexed array), and thus more recursivity

(the points and curves are plotted through their arrays). The code below is the

one used for figure 10 and 11, that is, the undamped exact pendulum simulation.

A.1 First code section

1 # Importing mathematics packages.

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import matplotlib.font_manager

5 from matplotlib import rc

6 rc(’font’, **{’family ’: ’serif’, ’serif’: [’Computer Modern ’],

’size’: 16})

7 rc(’text’, usetex=True)

8

9 # Plot settings.
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10 figure = plt.figure(figsize =(8, 4), dpi =400)

11 plt.xlabel(r’$\theta$ ’)

12 plt.ylabel(r’$\frac{d\theta }{dt}$’)

13 plt.xlim ([ -(5/2)*np.pi , (5/2)*np.pi])

14 plt.ylim ([-3.5, 3.5])

15 plt.xticks(np.arange (-2*np.pi , 2*np.pi+np.pi , step=(np.pi)),

[r’$-2\pi$’,r’$-\pi$’,r’0’,r’$\pi$’,r’$2\pi$’])

16

17 q = 0 # Friction coefficient.

18 t = 0 # Time.

19 m = 1 # Mass.

20 g = 10 # Gravitational acceleration.

21 L = 10 # Length.

22

23 # Definition of ODE separated in outputs.

24 def f(Y, t):

25 y1 , y2 = Y

26 return [y2 , -(g/L)*np.sin(y1)-(q/m)*y2]

27

28 #

29 # Creating phase picture as vector map.

30 #

31

32 # Input values for the function.

33 xin = np.linspace (-3*np.pi , 3*np.pi , 28)

34 yin = np.linspace (-3.5, 3.5, 20)

35 Y1 , Y2 = np.meshgrid(xin , yin) # Combining input values in an

array.

36

37 u, v = np.zeros(Y1.shape), np.zeros(Y2.shape) # Defining empty

vector arrays for horizontal and vertical components.

38
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39 # Cycling through every pair of inputs , calculating the output

vectors for each and storing them in the empty vector arrays.

40 NI , NJ = Y1.shape

41 for i in range(NI):

42 for j in range(NJ):

43 x = Y1[i, j]

44 y = Y2[i, j]

45 dy = f([x, y], t)

46 u[i,j] = dy[0]

47 v[i,j] = dy[1]

48

49 mag = np.sqrt(u*u+v*v) # Calculating magnitude of vectors for

color map.

50 Q = plt.quiver(Y1 , Y2, u, v, mag , cmap=plt.cm.jet) # Plotting

vector map.

51 plt.plot ([-2*np.pi , 0, 2*np.pi], [0, 0, 0], ’bo’, markersize =4) #

Plotting attractor points.

A.2 Second code section

The code section below only corresponds to the simulations for figures 6, 9, 11 and

13, which are the ones that include curve calculations and plotting for arbitrary

initial values. It is a continuation of the code above, and therefore originates from

the same source. [Kitchins 2013]

51 #

52 # Plotting some solutions of the differential equation.

53 #

54
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55 # Importing package ’odeint ’ which calculates solutions of ODEs.

56 from scipy.integrate import odeint

57

58 # Plot settings.

59 colours = [’tab:blue’, ’tab:red’, ’tab:green’, ’tab:purple ’]

60 labels = [r’Curve A’, r’Curve B’, r’Curve C’, r’Curve D’]

61

62 y1_0 = [0, 0, 2*np.pi, -2*np.pi] # Values for the horizontal axis.

63 y2_0 = [1, 1.999, -2.001, 2.5] # Values for the vertical axis.

64

65 sol = [] # Solution array.

66

67 # Cycling through initial values for the angular velocity and

amplitude.

68 for i in range(len(y1_0)):

69 span = np.linspace(0, 200, 2000) # Defining a span for the

data points that will be calculated.

70 p0 = [y1_0[i], y2_0[i]] # Starting point of each solution

curve.

71 plt.plot(y1_0[i], y2_0[i], marker=’o’, markersize =4,

color=colours[i], label=labels[i]) # Plotting ’p0 ’.

72 sol.append(odeint(f, p0 , span)) # Calculating solution array

’sol’ for ODE ’f’ starting on point ’p0’ and with span ’span ’.

73 plt.plot(sol[i][:, 0], sol[i][:, 1], linestyle=’-’,

linewidth =1, color=colours[i]) # Plotting the solution curve

from the solution array ’sol ’.

74

75 plt.legend(labelcolor=’linecolor ’, fancybox=False ,

facecolor=’white ’, edgecolor=’black ’, framealpha =1, loc=’upper

right’) # Legend settings.
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A.3 Variations between figures

This code was the base for all six simulations, and the alterations to produce the

six figures are described below:

• Figure 6 contains both sections of the code. It defines y2 in function f as

-(g/L)*y1-(q/m)*y2 (line 26 in the code), or, mathematically, θ′2 = g
`
θ1 −

q
m
θ2. The friction coefficient q is q = 0. The curve plotted starts at P (0, 2).

• Figure 9: both sections. f: y2 = -(g/L)*y1-(q/m)*y2, or θ′2 = g
`
θ1 − q

m
θ2.

Parameters: q = 0.2, P (0, 2).

• Figure 10: first section. f: y2 = -(g/L)*np.sin(y1)-(q/m)*y2, or θ′2 =

g
`

sin θ1 − q
m
θ2. Parameters: q = 0.

• Figure 11: both sections. f: y2 = -(g/L)*np.sin(y1)-(q/m)*y2, or θ′2 =

g
`

sin θ1 − q
m
θ2. Parameters: q = 0, A(0, 1), B(0, 1.999), C(−2π,−2.001),

D(−2π, 2.5).

• Figure 12: first section. f: y2 = -(g/L)*np.sin(y1)-(q/m)*y2, or θ′2 =

g
`

sin θ1 − q
m
θ2. Parameters: q = 0.5.

• Figure 13: both sections. f: y2 = -(g/L)*np.sin(y1)-(q/m)*y2, or θ′2 =

g
`

sin θ1 − q
m
θ2. Parameters: q = 0.2, A(−2π, 2.3), B(−2π, 2.75), C(4

3
π, 0).
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