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Introduction 

I have had a fascination with origami ever since I learned how to fold a paper-frog in 

elementary school. This fold stood out to me for two reasons: when you pressed the back-end 

of the frog it did a little jump, and it could also be pressed between the pages of my books and 

brought home without any damage to the shape, unlike other types of origami. More recently 

I looked into origami with renewed interest, which is how I found the Miura map-fold.  

The Miura fold is a fascinating piece of origami, as it can both be folded flat, like the 

frog, and be opened or closed in a singular motion, giving it a dynamic elegance. This way of 

folding piqued my interest and led me into the world of flat-folding origami and origami 

algebra. Wanting a more practical approach as well, I had the idea of looking into how the 

Miura fold could be incorporated into a product design in order to utilize its unique properties. 

This investigation will introduce the concept of the Miura fold, explore the two main 

theorems within origami algebra related to flat-folding, and apply the characteristics of the 

Miura fold to a possible design of a foldable sleeping-mat. 

Research question 

What are the mathematical properties of Miura folds allowing flat-folding, and how can the 

Miura fold be applied? 

Mathematical properties of the Miura fold 

Flat folding origami are pieces of origami where the final folded paper can be pressed flat 

without creating new creases or ruining old ones. In these types of origami folds, there are 

only two types of creases: the mountain crease and the valley crease (Hull, 1994). By 

representing the valley creases with dotted lines and the mountain creases with whole lines, a 

map of the creases of the fold can be created, as shown in Figure 1 and 2. 



Extended Essay Mathematics May 2020 

Page 4 of 37 

 

 

Figure 1: A flat-folding origami frog         Figure 2: Crease map of a flat-folding origami frog 

One type of flat-folding origami is the Miura fold, also called the Miura map-fold and the 

Miura-ori. The fold was invented in 1985 by Koryo Miura, a Japanese astrophysicist (Garcia, 

2017). A Miura fold, as it will be referred to in this essay, is a type of origami fold used to 

fold flat surfaces into flat folds of smaller surface-area. As with most origami, paper is most 

commonly used for this. The crease pattern of a Miura fold will look like the one in Figure 3. 

 

Figure 3: Crease map of a Miura fold 
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The crease map consists of rows of slanted parallelograms. Where four parallelograms meet, 

there is a vertex consisting of exactly four joined creases. These vertices either have three 

mountain creases and one valley crease or three valley creases and one mountain crease. 

Adjacent rows of parallelograms are slanted in opposite directions, causing the adjacent rows 

of vertices to look like they are “pointed” in opposite directions (Figure 4). 

    

Figure 4: Vertex pointing to the left (left) and vertex pointing to the right (right) 

When folded, the parallelograms combine to form parallelogram- or trapezoid-shapes, 

sometimes with small triangular gaps, as shown in Figure 5 and 6. 

 

Figure 5: Parallelogram-shape with gaps (left) and without gaps (right) 

 

Figure 6: Trapezoid-shape with gaps (left) and without gaps (right) 

What is perhaps most notable about the Miura fold is its so-called shape memory. When 

unfolded, it can be “re-folded and returned to its compact shape” much more easily than other 

origami folds, flat-folding or not (Garcia, 2017). In the case of the Miura fold, it can be 

unfolded and re-folded with one diagonal motion between two opposing corners (Figure 7). 
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Figure 7: Re-folding a Miura fold in one diagonal motion 

This characteristic is part of what makes the Miura fold so interesting, as it has possible, and 

existing, applications that reach beyond just paper-folding. Before delving into that, I will 

look at the mathematical properties of flat-folding origami vertices and how these apply to the 

Miura fold. 

Why do Miura folds fold flat? 

 

Figure 8: Crease map of a Miura fold vertex 
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There are certain properties of the creases and angles at the vertices of flat-folding origami 

pieces that allow them to fold flat. These properties are described by two theorems, namely 

Maekawa’s theorem and Kawasaki’s theorem.  

Kawasaki’s theorem 

Kawasaki’s theorem states that a vertex can be folded flat if and only if the sum of the 

alternating angles around it is 180° (Demaine, 2010). 

 

Figure 9: Angles around a Miura fold vertex 

For the vertex in Figure 9 to be locally foldable, the following must be true: 

𝛼 + 𝛾 = 180° 

𝛽 + 𝛿 = 180° 

𝛼 + 𝛾 − 𝛽 − 𝛿 = 0° 

In a single vertex of a Miura fold the angles α and β are supplementary and the angles γ and δ 

are supplementary.  

As all the parallelograms in a Miura fold are congruent, the angles α and δ are congruent and 

the angles β and γ are congruent. 

𝛼 + 𝛽 = 𝛾 + 𝛿 = 180° 

𝛼 = 𝛿 ∧ 𝛽 = 𝛾 

𝛼 + 𝛾 = 𝛽 + 𝛿 = 180° 

𝛼 + 𝛾 − 𝛽 − 𝛿 = 0° 
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Therefore, Kawasaki’s theorem holds true in all vertices of a Miura fold. Kawasaki’s theorem 

is a necessary condition for a Miura vertex to fold flat, but it is not sufficient to guarantee that 

it does. Although Kawasaki’s theorem reveals if the angles of a vertex facilitate local flat-

foldability, it does not mention the folding pattern needed to achieve this flat fold. There is 

another theorem that narrows down the number of different mountain and valley crease 

combinations needed for the vertex to be flat foldable, namely Maekawa’s theorem. 

Maekawa’s theorem 

Maekawa’s theorem states that, when a vertex folds flat, the number of mountain creases and 

valley creases joined in the vertex always differ by two (Natural Origami, 2016). 

|𝑀 − 𝑉| = 2 

As the Miura fold only has four creases joined at each vertex, it can have a combination of 

either three mountain creases/one valley crease or three valley creases/one mountain crease. 

In theory, this would allow for eight different combinations of mountain and valley creases. 

 

Figure 10: Crease maps of possible mountain/valley combinations in Miura fold vertices 
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Bird’s foot forcing 

Only six of these mountain and valley combinations are actually flat foldable. The vertices 

shown in Figure 10.a and 10.e cannot be folded flat. 

  

Figure 11: Crease map of a non-foldable Miura fold vertex 

Figure 11 shows a scaled-up version of Figure 10.a. In an attempt to fold this vertex according 

to the crease map, the surface P2 would have to be folded under P1 along l2 to create a 

mountain fold, while P3 would have to be folded under P4 along l4 to create another mountain 

fold. 

 

Figure 12: Attempt at folding Figure 11 
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After folding P2 and P3 they would overlap in the purple area shown in Figure 12, but this 

overlap can only happen by cutting the fold along l3. There are two possible ways for the 

vertex to fold flat and l3 to remain undivided: 

1. l3 could be folded into a mountain crease while l1 becomes a valley crease, in which 

case the fold would become the same as in Figure 10.d.  

2. l3 could be folded into a mountain crease while adding two new valley creases (l5 and 

l6). These creases would extend from the vertex, dividing P2 and P3 into two parts each 

(Figure 13). In this case, the vertex consists of more than four creases and does no 

longer qualify as a Miura fold. 

 

Figure 13: Flat folding of Figure 11 

The phenomenon of not being able to fold flat using the crease pattern in Figure 10.a and 10.e 

is called bird’s foot forcing due to the vertex’s visual similarity to a bird’s foot (Hull and 

Ginepro, 2014).  

Not all vertexes shown in Figure 10 can be folded flat, even though both Maekawa’s theorem 

and Kawasaki’s theorem hold true in all of them. This shows that both Maekawa’s theorem 

and Kawasaki’s theorem are necessary but insufficient conditions for a vertex to have flat 

foldability. 
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By looking at a standard Miura fold with multiple vertices (Figure 14), it becomes apparent 

that only the mountain/valley pairings shown in Figure 10.d and 10.h are present. 

 

Figure 14: Standard Miura fold with five by five parallelograms 

Both Maekawa’s theorem and Kawasaki’s theorem hold true in the vertices of the Miura fold, 

and, due to the absence of the bird’s foot forcing, they all have local flat-foldability. Local 

flat-foldability in all the vertices of a fold do not guarantee global flat-foldability (Hull, 1994). 

However, the alternating pattern of creases and vertices in the Miura fold allow for global 

flat-foldability.  



Extended Essay Mathematics May 2020 

Page 12 of 37 

 

Application of the Miura fold 

The intention of the original Miura fold was to be a design used for solar panels in space, as 

they could be stored folded during the launch and easily opened when the probe reached its 

intended orbit (Landau, 2017) (Garcia, 2017). The fold has also been used to fold maps to 

make them easier to refold when opened, hence the name Miura map-fold (Bain, 1980). 

Another area where one could potentially make use of the characteristics of the Miura map-

fold is sleeping-mats. Sleeping-mats used for hiking are typically made of foam and have to 

be rolled up after use. They take a lot of space, as the rolled-up mat is left with an empty 

cylinder in the middle. There are existing sleeping-mat designs which are foldable (Figure 15) 

and there are sit pads making use of a fold visually similar to a Miura vertex, just with squares 

or rectangles instead of parallelograms (Figure 16).  

 

Figure 15: Crease map of a folded sleeping-mat 

 

Figure 16: Crease map of a sit pad 
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By utilising the Miura fold it might be possible to create a foldable sleeping-mat that occupies 

less space and takes less effort to pack and unpack. The first step in doing so would be to 

determine the relationship between the area of the folded and unfolded Miura fold. In order to 

do this, I opted to use GeoGebra to create models of both the folded and unfolded version of a 

single Miura vertex. 

 

Figure 17: Unfolded Miura vertex 

 

Figure 18: Unfolded Miura vertex with distances and coordinates 
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The base of the vertex is the parallelogram ABIE (Figure 17). The point A has the coordinates 

(x1, y1). The length of the segment AB is w. The vertical distance from point A to point E is h. 

The horizontal distance from point A to point E is d. The coordinates of remaining points are 

shown in Figure 18.  

The values w, d, and h are all variables and are represented by sliders in the GeoGebra model.  

Table 1: Table of coordinates of the points from Figure 17 and 18 

A: (x1, y1) 

B: (x1+w, y1) 

C: (x1+2w, y1) 

D: (x1, y1+2h) 

E: (x1+d, y1+h) 

F: (x1+w, y1+2h) 

G: (x1+2w, y1+2h) 

H: (x1+d+2w, y1+h) 

I: (x1+d+w, y1+h) 

The folded Miura vertex is represented by the model shown in Figure 20. The grey lines show 

the edges of the paper, while the blue lines represent the folds. The dashed line still represents 

the valley crease, but, after folding, this crease is inside the fold and not visible from the 

outside. Each point in Figure 19 corresponds to the point of the same letter in Figure 17. 
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Figure 19: Folded version of the Miura vertex in Figure 17 

In Figure 19, the lines l2 and l4 from Figure 17 are now directly behind each other. The 

parallelograms ABIE and EIFD (Figure 17) completely overlap in Figure 19, and so do the 

parallelograms BCHI and IHGF, meaning there are now three double points: A’ and D’, C’ 

and G’, and B’ and F’.  

 

Figure 20: Closeup of Figure 18 

 

The area of a folded Miura vertex 

The geometric shape of the fold in Figure 15 is called an isosceles trapezoid. The area of an 

isosceles trapezoid is given by the formula (Weisstein, 2019): 

𝐴𝑟𝑒𝑎 =  
𝑡𝑜𝑝 + 𝑏𝑜𝑡𝑡𝑜𝑚

2
× ℎ𝑒𝑖𝑔ℎ𝑡 
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In order to apply this formula to Figure 19, one has to know the height as well as the length of 

the top and bottom line of the trapezoid. Therefore, the lengths of the segments A’E’ and 

A’C’ have to be determined, as well as the segment A’Q (Figure 21). 

 

Knowing the vertical and horizontal distance from A to E (Figure 17), Pythagoras can be used 

to determine the length of the segment AE.  

𝑐2 = 𝑎2 + 𝑏2 

𝐴𝐸 = √ℎ2 + 𝑑2 

The length of AE is the same as the length of BI and CH. 

 

Figure 21: Folded Miura vertex from Figure 17 with distances 

The length of the segment A’C’ (Figure 21) can be found using the trigonometric functions. 

∠𝐵′𝐴′𝑃 = ∠𝑅𝐴′𝐸′ 

𝐸′𝑅

𝐴′𝑅
=

ℎ

𝑑
= tan(∠𝑅𝐴′𝐸′) 

∠𝐵′𝐴′𝑃 = tan−1 (
ℎ

𝑑
) 

𝐴′𝑃

𝐴′𝐵′
=

𝐴′𝑃

𝑤
= cos(∠𝐵′𝐴′𝑃) = cos (tan−1 (

ℎ

𝑑
)) 

𝐴′𝑃 = 𝑤 × cos (tan−1 (
ℎ

𝑑
)) 

𝐴′𝐶′ = 2 × 𝐴′𝑃 
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𝐴′𝐶′ = 2𝑤 cos (tan−1 (
ℎ

𝑑
)) 

The height of the fold is the segment A’Q (Figure 21), which is the same length as the vertical 

distance from A’ to B’. This height can be found using the trigonometric function. 

𝐴′𝑄 = 𝐵′𝑃 

∠𝐵′𝐴′𝑃 = tan−1 (
ℎ

𝑑
) 

𝐵′𝑃

𝐴′𝐵′
=

𝐵′𝑃

𝑤
= sin(∠𝐵′𝐴′𝑃) = sin (tan−1 (

ℎ

𝑑
)) 

𝐵′𝑃 = 𝐴′𝑄 = 𝑤 × sin (tan−1 (
ℎ

𝑑
)) 

However, figuring out the length of the bottom of the fold introduces certain complications 

due to the gaps that appear in some versions of the Miura fold, as shown in Figure 5 and 6. 

The following section will focus on avoiding this gap. 

 

Uncomplicating the folded figure 

In the isosceles trapezoid shown in Figure 19, the segments A’E’ and C’H’ have an overlap. 

This is not always the case when a Miura fold is folded. Depending on the values of h, w, and 

d, segments A’E’ and C’H’ will sometimes be adjacent (Figure 22) or have some distance 

between them (Figure 23).  

 

Figure 22: A’E’ and C’H’ are adjacent Figure 23: A’E’ and C’H’ do not overlap and are not adjacent 
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A gap such as the one in Figure 23 complicates the calculation of the area, as the shape is no 

longer a trapezoid. In order to avoid this gap, it first has to be determined when point C’ and 

point E’ have the same coordinates. 

The coordinates of point A’ are (x2, y2).  

As the length of both A’C’ and A’E’ have already been worked out, the coordinates of point 

E’ and point C’ are: 

𝐸′: (𝑥2 + √ℎ2 + 𝑑2, 𝑦2) 

𝐶′: (𝑥2 + 2𝑤 cos (tan−1 (
ℎ

𝑑
)) , 𝑦2) 

From this, we can determine that when the x-coordinate of point E’ is greater than that of 

point C’, there is an overlap.  

2𝑤 cos (tan−1 (
ℎ

𝑑
)) < √ℎ2 + 𝑑2 

When the x-coordinates of point E’ and C’ are the same, the segments A’E’ and C’H’ are 

adjacent.  

2𝑤 cos (tan−1 (
ℎ

𝑑
)) = √ℎ2 + 𝑑2 

 

When the x-coordinate of point C’ is greater than that of point E’, there is a gap. 

2𝑤 cos (tan−1 (
ℎ

𝑑
)) > √ℎ2 + 𝑑2 

Hence, there is no gap when the x-coordinate of point E’ is greater than or equal to the x-

coordinate of point C’. 

2𝑤 cos (tan−1 (
ℎ

𝑑
)) ≤ √ℎ2 + 𝑑2 

Through varying the sliders in the GeoGebra model, I observed that with some lengths of w 

and h there would never be a gap no matter the size of d.  
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Figure 24: GeoGebra model with w < h 

When w is less than h, p2 is always greater than p1, hence there is no gap between A’E’ and 

C’H’ (Figure 24). 

 

Figure 25: GeoGebra model with w = h 
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When w is equal to h, there is no gap between A’E’ and C’H’. At two points p1 and p2 

intersect and are tangent to each other, which is where A’E’ and C’H’ are adjacent (Figure 

25). 

 

Figure 26: GeoGebra model with w > h 

When w is greater than h, p1 and p2 intersect at four points. There is a gap between A’E’ and 

C’H’ at the values of d where p1 is greater than p2 (Figure 26). 

 

Having made these observations, the next step is to prove mathematically that there is never a 

gap when the value of w is less than or equal to the value of h. 

The equation developed above can be used to figure out the relationship between h, w, and 

whether or not there is a gap. 

2𝑤 cos (tan−1 (
ℎ

𝑑
)) ≤ √ℎ2 + 𝑑2 

4𝑤2 cos2 (tan−1 (
ℎ

𝑑
)) ≤ ℎ2 + 𝑑2 
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Proof of cos2(arctan(x)) = 1/(1+x2) 

The equation can be simplified by using the trigonometric functions: 

tan(tan−1(𝑥)) = 𝑥 

tan2(tan−1(𝑥)) = 𝑥2 

1 + tan2(tan−1(𝑥)) = 1 + 𝑥2 

1 + tan2(tan−1(𝑥)) = sec2(tan−1(𝑥)) 

sec2(tan−1(𝑥)) = 1 + 𝑥2 

sec2(tan−1(𝑥)) =
1

cos2(tan−1(𝑥))
 

1 + 𝑥2 =
1

cos2(tan−1(𝑥))
 

cos2(tan−1(𝑥)) =
1

1 + 𝑥2
 

When applied to the equation: 

4𝑤2 cos2 (tan−1 (
ℎ

𝑑
)) =

4𝑤2

1 +
ℎ2

𝑑2

 

4𝑤2

1 +
ℎ2

𝑑2

≤ ℎ2 + 𝑑2 

4𝑤2𝑑2

𝑑2 + ℎ2
≤ ℎ2 + 𝑑2 

4𝑤2𝑑2 ≤ (ℎ2 + 𝑑2)2 

4𝑤2𝑑2 ≤ ℎ4 + 2ℎ2𝑑2 + 𝑑4 

There are too many variables in this equation. There should ideally only be one: the angle θ of 

the parallelogram (Figure 17). This angle has earlier been expressed in the form of: 

𝜃 = ∠B′A′P = tan−1 (
ℎ

𝑑
) 
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Assuming that the height h and width w of the parallelograms will be kept constant, θ will 

change by changing d. Their exact relationship is: 

𝑑 =
ℎ

tan 𝜃
 

So, d will be the variable. 

4𝑤2𝑑2 ≤ ℎ4 + 2ℎ2𝑑2 + 𝑑4 

0 ≤ ℎ4 + 2ℎ2𝑑2 + 𝑑4 − 4𝑤2𝑑2 

0 ≤ ℎ4 + 2𝑑2(ℎ2 − 2𝑤2) + 𝑑4 

There will be no gap between the segments when ℎ4 + 2𝑑2(ℎ2 − 2𝑤2) + 𝑑4  is greater than 

or equal to zero.  

This function can be expressed as a quadratic function by replacing d2 with n: 

𝑛2 + 2(ℎ2 − 2𝑤2)𝑛 + ℎ4 

The quadratic formula can be used to find the roots.  

𝑛 =
−2(ℎ2 − 2𝑤2) ± √(2(ℎ2 − 2𝑤2))

2
− 4 × 1 × ℎ4

2 × 1
 

The quadratic equation can either have one real root, two real roots, or no real roots. The 

condition of the number of roots is the value of the discriminant.  

When the graph of 𝑛2 + 2(ℎ2 − 2𝑤2) × 𝑛 + ℎ4 is tangent to the x-axis, there is only one 

root.  
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Figure 27: Graph of n2+2(h2-2w2)n+h2 when h = w 

To either be tangent to the x-axis or not cross it at all, the discriminant has to be less than or 

equal to zero. 

(2(ℎ2 − 2𝑤2))
2

− 4 × 1 × ℎ4 ≤ 0 

4(ℎ2 − 2𝑤2)2 − 4ℎ4 ≤ 0 

4(ℎ4 − 4ℎ2𝑤2 + 4𝑤4) − 4ℎ4 ≤ 0 

4ℎ4 − 16ℎ2𝑤2 + 16𝑤4 − 4ℎ4 ≤ 0 

−16(ℎ2𝑤2 − 𝑤4) ≤ 0 

ℎ2𝑤2 − 𝑤4 ≥ 0 

𝑤2(ℎ2 − 𝑤2) ≥ 0 

The width squared is always greater than zero: 

𝑤2 > 0 

ℎ2 − 𝑤2 ≥ 0 

ℎ2 ≥ 𝑤2 

|ℎ| ≥ |𝑤| 
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The absolute value of h has to be greater than or equal to the absolute value of w in order for 

there to be no gaps in the folded Miura fold. 

As both h and w will be positive in further calculations, there will be no gaps in the final 

Miura fold when h is greater than or equal to w. For simplicity’s sake, the values of h and w 

will be considered equal from now on and referred to as the constant k. 

 

Finalizing the function 

Now that the condition for there to be no gaps in the fold has been instated, the area of the 

folded vertex can be calculated. The area of an isosceles trapezoid is found by the formula: 

𝐴𝑟𝑒𝑎 =  
𝑡𝑜𝑝 + 𝑏𝑜𝑡𝑡𝑜𝑚

2
× ℎ𝑒𝑖𝑔ℎ𝑡 

The height is 𝑤 × sin (tan−1 (
ℎ

𝑑
)) and the length of the top is √ℎ2 + 𝑑2, so what remains is 

an expression for the length of the bottom. 

  

 

Figure 28: Copy of Figure 19 

Unless the segments A’E’ and C’H’ from Figure 28 are adjacent, which they only are at 

certain values of d, the overlap C’E’ must still be considered when working out the area of the 

trapezoid.  

The length of the bottom of the shape is the segment A’H’.  
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The length of the overlap C’E’ between A’E’ and C’H’ is equal to the x-coordinate of E’ 

minus the x-coordinate of C’. 

𝐶′𝐸′ = √𝑘2 + 𝑑2 − 2𝑘 cos (tan−1 (
𝑘

𝑑
)) 

The length of the bottom of the trapezoid can be expressed as: 

𝐴′𝐻′ = 𝐴′𝐸′ + 𝐶′𝐻′ − 𝐶′𝐸′ 

𝐴′𝐻′ = √𝑘2 + 𝑑2 + √𝑘2 + 𝑑2 − (√𝑘2 + 𝑑2 − 2𝑘 cos (tan−1 (
𝑘

𝑑
))) 

𝐴′𝐻 = √𝑘2 + 𝑑2 + 2𝑘 cos (tan−1 (
𝑘

𝑑
)) 

Now, having expressions for the height, the length of the top, and the length of the bottom of 

the isosceles trapezoid, an expression can be made for its area. 

𝐴𝑟𝑒𝑎 =  
𝑡𝑜𝑝 + 𝑏𝑜𝑡𝑡𝑜𝑚

2
× ℎ𝑒𝑖𝑔ℎ𝑡 

𝐴(𝑑) =
√𝑘2 + 𝑑2 + √𝑘2 + 𝑑2 + 2𝑘 cos (tan−1 (

𝑘
𝑑))

2
× 𝑘 sin (tan−1 (

𝑘

𝑑
)) 

Simplified: 

𝐴(𝑑) = (√𝑘2 + 𝑑2 + 𝑘 cos (tan−1 (
𝑘

𝑑
))) × 𝑘 sin (tan−1 (

𝑘

𝑑
)) 

As shown earlier: 

cos(tan−1(𝑥)) =
1

√𝑥2 + 1
 

The sine of the arctan of x can also be expressed in a similar manner: 
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Figure 29: Simplifying sin(arctan(x)) 

sin(𝜃) = sin(tan−1(𝑥)) =
𝑥

√𝑥2 + 1
 

As a result, A(d) can be simplified to: 

𝐴(𝑑) =
𝑘2(𝑘2 + 𝑘𝑑 + 𝑑2)

𝑘2 + 𝑑2
 

Plotting this function into GeoGebra gives a graph illustrating how the area of the fold 

changes as d increases: 

 

Figure 30: Graph of A(d) 

A(d) has a maximum point when 𝑑 = 𝑘 
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A(d) has a horizontal asymptote at 𝑦 = 𝑘2 

 

Figure 31: A(d) with maximum and horizontal asymptote 

Expanding beyond one vertex 

Up until this point only the fold of a single vertex has been considered. As seen in Figure 14 

(page 11), a Miura fold can consist of more than just four parallelograms.  

The number of horizontal parallelograms, when the unfolded Miura fold is oriented as in 

Figure 14, determines the length of the top and bottom of the parallelograms. When there is 

an odd number of horizontal parallelograms the fold has the shape of a parallelogram. 

 

Figure 32: Miura fold with three horizontal parallelograms (grey lines are enclosed in the fold) 
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For an odd-numbered Miura fold, the length of both the top and the bottom of the fold is the 

same and can be written as: 

(𝑛 − 1) × (√𝑘2 + 𝑑2) − (𝑛 − 2) × (√𝑘2 + 𝑑2 − 2𝑘 cos (tan−1 (
𝑘

𝑑
))) 

where n is the number of parallelograms horizontally. 

The area of a parallelogram is the height times the width, hence the area of a Miura fold with 

an odd number of parallelograms is: 

𝐴𝑟𝑒𝑎 = 𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡 

𝐴(𝑑) = ((𝑛 − 1) × (√𝑘2 + 𝑑2) − (𝑛 − 2) × (√𝑘2 + 𝑑2 − 2𝑘 cos (tan−1 (
𝑘

𝑑
)))) × 𝑘 sin (tan−1 (

𝑘

𝑑
))  

Simplified: 

𝐴(𝑑) =
𝑘2(𝑑2 + 2𝑛𝑘𝑑 − 4𝑘𝑑 + 𝑘2)

𝑘2 + 𝑑2
 

A(d) has a maximum point when 𝑑 = 𝑘 

A(d) has a horizontal asymptote at 𝑦 = 𝑘2 

 

Figure 33: Area of an odd-numbered Miura fold 

When there is an even number of horizontal parallelograms, the fold has the shape of an 

isosceles trapezoid. 
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For an even-numbered Miura fold, the length of the bottom of the trapezoid is: 

𝑛 × (√𝑘2 + 𝑑2) − (𝑛 − 1) × (√𝑘2 + 𝑑2 − 2𝑘 cos (tan−1 (
𝑘

𝑑
))) 

And the length of the top of the trapezoid is: 

(𝑛 − 1) × (√𝑘2 + 𝑑2) − (𝑛 − 2) × (√𝑘2 + 𝑑2 − 2𝑘 cos (tan−1 (
𝑘

𝑑
))) 

Substituting this into the formula for the area of an isosceles trapezoid gives: 

𝐴(𝑑) =
𝑛 × (√𝑘2 + 𝑑2) − (𝑛 − 1) × (√𝑘2 + 𝑑2 − 2𝑘 cos (tan−1 (

𝑘
𝑑

))) + (𝑛 − 1) × (√𝑘2 + 𝑑2) − (𝑛 − 2) × (√𝑘2 + 𝑑2 − 2𝑘 cos (tan−1 (
𝑘
𝑑

)))

2
× 𝑘 sin (tan−1 (

𝑘

𝑑
)) 

Simplified: 

𝐴(𝑑) =
𝑘2(𝑑2 + 2𝑘𝑛𝑑 − 3𝑘𝑑 + 𝑘2)

𝑘2 + 𝑑2
 

A(d) has a maximum point when 𝑑 = 𝑘 

A(d) has a horizontal asymptote at 𝑦 = 𝑘2 

 

Figure 34: Area of an even-numbered Miura fold 
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Applying the functions 

Now that two functions for the possible areas of the Miura fold have been developed, the 

number of parallelograms and their size must be determined. 

The sleeping-mat I already own has the measurements 186 cm x 60 cm x 1.4 cm. A length of 

180 cm would be enough, so the total height of the parallelograms in the unfolded Miura 

sleeping-mat should add up to 180 cm, while the total width should add up to 60cm. 

180 = 𝑛1 × 𝑘 

60 = 𝑛2 × 𝑘 

 

Figure 35: n1 and n2 

The number of parallelograms vertically is n1. 

The number of parallelograms horizontally is n2. 

k must therefore be a common factor of 180 and 60. 

180 = 2 × 2 × 3 × 3 × 5 

60 = 2 × 2 × 3 × 5 

The possible values of k are 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30 cm. 

 

 



Extended Essay Mathematics May 2020 

Page 31 of 37 

 

At the lengths 2, 3, 5, 6, 10, 15, and 30 cm, the folded mat will be an isosceles trapezoid. 

At the lengths 4, 12, and 20 cm, the folded mat will be a parallelogram. 

 

The aim is to find the minimum area, and this would necessitate there existing a minimum 

area. In Figure 33 and 34 there is a maximum, and there is a horizontal asymptote which the 

function approaches as d increases, and the only minimum within in the stated range (0 to +∞) 

is when d = 0. When d equals zero, the Miura fold is made up of squares instead of slanted 

parallelograms (Figure 36). 

 

Figure 36: Unfolded Miura fold with d=0 

When the Miura fold consists of squares, it loses its characteristic of 

being foldable with one diagonal motion, which is one of the essential 

properties of the Miura fold required for the sleeping-mat design. As a result, neither the 

equation for the odd- nor even-numbered Miura folds has a minimum point which satisfies the 

criterion of the fold being a Miura fold. Hence, a minimum area cannot be found. 

 

Optimizing the volume 

As a minimum area cannot be found, other factors should be considered, such as the volume 

of the folded mat. The mat itself will have a thickness of about 1.5 cm, so how much it is 

being folded will affect its total volume. The thickness of the folded mat is determined by the 

number of parallelograms, both horizontally and vertically, and how tilted they are.  
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Figure 37: Figure 37 when folded 

When d is smaller than k, the red lines in Figure 37 overlap as 

shown in Figure 38. These zig-zagging red lines represent the 

mountain folds running between the columns of parallelograms. 

When those mountain folds overlap in the fold, the thickness 

doubles in the areas of overlap, increasing the overall thickness. 

 

 

 

Figure 39: Figure 39 when folded 

However, when d is equal to k, as in Figure 39, the mountain folds 

don’t overlap, but are adjacent. This creates an even thickness 

across the whole fold (Figure 40). By choosing to keep d = k, this 

uniform thickness is ensured for all the possible folds with 

different values of k. 

 

Figure 40: Miura fold with d = k, 

unfolded 

Figure 38: Miura fold with d < k, unfolded 



Extended Essay Mathematics May 2020 

Page 33 of 37 

 

The folded mat cannot be too long, either, as it should fit it in a regular hiking backpack. By 

fixing the length of the mat when folded to 60 cm, the value of k can be found which ensures 

both uniform thickness and a total length of about 60 cm. 

For an odd-numbered Miura fold, the length when folded is given by: 

(𝑛2 − 1) × (√𝑘2 + 𝑑2) − (𝑛2 − 2) × (√𝑘2 + 𝑑2 − 2𝑘 cos (tan−1 (
𝑘

𝑑
))) 

= √𝑑2 + 𝑘2 −
(−2𝑛2𝑘𝑑 + 4𝑘𝑑)√𝑑2 + 𝑘2

𝑑2 + 𝑘2
 

Assuming d is equal to k this becomes: 

√2𝑘2 −
2𝑘2(−𝑛2 + 2)√2𝑘2

2𝑘2
 

Simplified: 

(𝑛2 − 1)𝑘√2 

n2 times k is the width of the sleeping-mat when unfolded, which is 60 cm. Using this 

relationship, n2 can be expressed by k: 

𝑛2 =
60

𝑘
 

Substituting n2 with this, and equating the length of the folded mat to 60, we get an equation 

with k as the only variable: 

(
60

𝑘
− 1) 𝑘√2 = 60 

60√2 − 𝑘√2 = 60 

𝑘 =
60(√2 − 1)

√2
 

𝑘 = 17.6 

The possible value of k, as a multiple of 180 and 60, closest to 17.6 is 20.  

At k = 20, n1 is 9, n2 is 3, and d = k = 20. 

The length of the folded mat will then be: 
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𝐿(𝑑) = √𝑑2 + 𝑘2 −
(−2𝑛2𝑘𝑑 + 4𝑘𝑑)√𝑑2 + 𝑘2

𝑑2 + 𝑘2
 

𝐿(20) = 40√2 = 56.6 

𝜃 = tan−1 (
𝑘

𝑑
) = tan−1 (

20

20
) = 45° 

 

The optimal measurement of the width and the height 

of the parallelograms in the Miura fold of the sleeping-

mat (Figure 41) are 20 cm, with the parallelograms 

being slanted at a 45-degree angle. When folded, this 

mat will have a parallelogram-shape with a length of 

56.6 cm along the bottom.  

Figure 41: Finalized mat design 
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Conclusion 

In the first part of this investigation, Maekawa’s theorem and Kawasaki’s theorem were 

explained in relation to single-vertex flat-foldability in a Miura fold. These theorems hold true 

in all vertices of a Miura fold, yet are insufficient conditions to guarantee local flat-

foldability. Bird’s foot forcing provides insight into the limitations of flat-folding origami 

vertices, but has not yet been incorporated into a definite theorem. 

 Another interesting aspect of these folds that was not looked into is global flat-

foldability, which is related to graph-theory and graph-colouring within discrete mathematics. 

There is also potential for further exploration into shape-memory of origami folds. It is 

unclear what the prerequisites are for a fold to have shape-memory, and this topic requires 

further research. 

 In the second part of this investigation, an attempt was made to incorporate the 

properties of a Miura fold into the design of a foldable sleeping-mat. This was done by 

creating an equation for the area of the folded sleeping-mat which included all the different 

variable measurements. The mathematics utilized throughout this process were a combination 

of geometry, trigonometry, algebra, and functions and equations.  

 A big challenge was ensuring that the fold would have no gaps, which was avoided by 

equalling the width and the height of the parallelograms. A minimum area of the folded mat 

could not be found while keeping it a Miura fold. Parameters were set in order to determine 

the best dimensions of the mat; consisting of limiting the slanting of the parallelograms to 

provide uniform thickness, and to set an approximate fixed width of the folded mat to ensure 

that it could fit inside a backpack. 

 Despite the final mat design having semi-uniform thickness, the relationship between 

the number of vertical parallelograms and the thickness of the fold is still unclear and could 

be investigated further. The volume of the sleeping-mat design created in this investigation is 
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unclear, and cannot be compared to existing sleeping mats to see if it is actually a more 

convenient design. Another limitation is that, due to the large inclination of the 

parallelograms, the unfolded mat has a very jagged shape which is impractical to sleep on. It 

is evident that there is much room for improvement in this design, and that more aspects will 

have to be considered in order to create a functional sleeping-mat. 
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