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1 Introduction

Helicopters are used for their ability to take off and land vertically, qualifying them for a host

of tasks, namely: tourism, aerial observation and medical transportation (“Helicopter Career

Info”, 2017). An intriguing physics phenomenon of a helicopter, is its potential to hover. A

twin bladed single rotor helicopter, consumes 60 - 85% more power to hover than with forward

flight, making the manoeuvre inefficient (Lombardi, 2017). A vast amount of literature has

been published for optimising blade shape and fuselage weight, in order to enhance efficiency.

However, the role of a rotors angular velocity has never been addressed.

Hence, this essay attempts to answer the question “What is the relationship between angu-

lar velocity and power efficiency of a twin bladed single rotor helicopter system, in hover?” The

essay seeks to correct Froude’s momentum and Drzweicki’s blade element theory, to obtain a

theoretical model for power efficiency in terms of angular velocity. In order to test validity of

the theoretical model, an experiment is devised to evaluate the correlation between theoretical

and empirical power data.

Firstly, the essay delves into Froude’s model and realises the necessity of thrust and power

coefficient in expressing power efficiency. To accommodate NACA 0015 aerofoil geometry used

within the experiment, coefficients are corrected by integrating small blade elements along the

blade using Drzewiecki’s model. Thereafter, a dependence between air resistance and thrust

coefficient is established and incorporated using XFOIL simulations. The simulation allows to

compare thrust and power coefficient against angular velocity with industrial specifications,

providing insights into hypothetically inefficient, ideal and efficient ranges for power interms

of angular velocity. Correspondingly, the absolute uncertainty for coefficients are found to be

substantially large; losing confidence with the theoretical model. Hence, to affirm if the inves-

tigation is concurrent with empirical data, an experiment is devised to simulate a helicopter

rotor; obtaining data for power coefficient. The empirical and theoretical power coefficient

establish a strong correlation, which implied the uncertainties accumulated as a consequence

of extensive mathematical calculations. Ultimately, the calculated coefficients were substituted

in the model, yielding a clear relationship between power efficiency and angular velocity.

This research question is worthy of investigation, as it advances the understanding and

provides impetus to the research in power performance of aerial craft’s. Commercially, we
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observe the demand of various clients including: airlines and hobbyists who desire to minimise

battery drain time and maximise usage, leading to the central question of power efficiency.

2 Background Information

Power dissipated is product of force imparted on air and mean air velocity. Therefore, in order

to establish a theoretical model for power efficiency, we must inspect airflow velocity and the

different forces in a rotor system.

A hovering helicopter is considered at rest, since the body has zero acceleration and so

zero net-force. The airscrew of twin bladed single rotor helicopter rotates around central z-

axis, propelling air in a downwards vortex known as the slipstream, figure 1. The slipstream

is governed by an inverse relationship termed the venturi effect, where the decreasing cross-

sectional area (A), increases air velocity (v̄) (Halliday et al., 2014). In the early 20th century,

William Froude combined venturi effect with Bernoulli’s principle; formulating an equation for

the axial force (z-plane) lifting a helicopter - thrust (T ).

Figure 1: A slipstream for twin bladed single rotor helicopter.
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According to Bernoulli’s principle, the rotor system experiences dynamic pressure (Pd)

inside and static pressure (Ps) outside the slipstream boundary, which always adds to a constant

(1). The dynamic pressure, characteristically exhibits proportionality with airflow velocity:

Pd ∝ v̄ (Zhao et al., 2019). We assume air density is ρ = 1.23kgm−3 for simplicity, although

the value varies with elevation.

ΣP = Ps + Pd = constant

ΣP = Ps +
1

2
ρv̄2 = constant (1)

The airflow velocity increases along slipstream from initial velocity (u = 0ms−1) above to final

velocity (v) below the airscrew, proportionally increasing dynamic pressure. Therefore, the

cross-sectional area decreases from Au above to Av below the airscrew by the venturi effect,

proportionally decreasing static pressure from P1 to P2 respectively; preserving the constant

relationship in (1).

Above airscrew: ΣP = P1 +
1

2
ρu2

Bellow airscrew: ΣP = P2 +
1

2
ρv2

P1 +
1

2
ρu2 = P2 +

1

2
ρv2

Rearranging the equation to find pressure differential experienced by airscrew.

P1 − P2 =
1

2
ρ(u2 − v2)

Dynamic pressure differential: ∆Pd = P2 − P1 =
1

2
ρv2 (Since, u = 0ms−1)

2.1 Induced velocity and thrust

Froude argued, since pressure is quotient of net-force and cross-sectional area, the greater

dynamic pressure beneath the blade causes an upwards directed net-force, figure 2. This net-

force is termed thrust, acting orthogonal to airflow on the airscrew (2) (Venkatesan, 2012).
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The airscrew area is assumed to be circular where blade’s radius is R, denoted by Ai = πR2.

ΣForcenet = Pd(Ai)

T =
1

2
Aiρv

2

T =
1

2
ρπR2v2 (2)

Figure 2: Froude uses Bernoulli’s principle and properties of venturi effect to model thrust (T ) in a rotor system.

Conversely, Froude proposed an alternative argument where air particles are the frame

of reference. Air particles have negligible mass, requiring mass flow rate (ṁ) defined as the

fluid mass passing airscrew per unit time. Mass can also be considered as volumetric density

(m = V ρ), where velocity of air positioned at rotor is known as induced velocity (vi).

ṁ =
∆m

∆t

ṁ =
V ρ

t
=⇒ ρAivi

Elastic collision occurs between air particles and airscrew for conserving momentum in sys-
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tem, producing an equal and opposite axial thrust force (Gessow & Myers, 1985). Substituting

ṁ in Newton’s second law, we obtain thrust (3). We assume ideal gas properties are preserved

in such high pressure situations for simplicity.

F = ma =⇒ ṁ(∆v̄)

T = ρAivi(v − u)

T = ρπR2viv (Since, u=0ms−1) (3)

Realising (2) and (3) model thrust and also incorporate similar variables except for velocity,

equating the two expressions yields an important velocity identity (4).

T = ρπR2viv =
1

2
ρπR2v2

2vi = v (4)

Thereby, substituting velocity identity within (2) and (3) we are able to derive unified

thrust equation (5). Moreover, by isolating induced velocity we determine an equation for

velocity at the airscrew (6). This model for force and velocity is Froude’s momentum theory

(Gessow & Myers, 1985).

T = ρπR2vi(2vi) =
1

2
ρπR2(2vi)

2

T = 2ρπR2v2
i (5)

vi =

√
T

2ρπR2
(6)

2.2 Power and power efficiency

Recalling from earlier, power (P̄ ) can now be defined as the product of axial thrust force

orthogonal to airflow and induced air velocity shown in (7).

P̄ = Fv =⇒ Tvi (7)

Power efficiency is the ratio between useful and total power, expressed in percentage. In
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fluid mechanics, useful power is represented by (7), as here the fluid behaves in an ideal system

without viscosity. Viscosity measures a fluids resistance to deformation (Adminstration, 2020).

Total power refers to power measured experimentally (P̄exp), where aerodynamic losses due to

resistive forces are considered. Hence, expanding for power efficiency yields (8):

η =
Useful Power

Total Power
× 100 =⇒ Tvi

¯Pexp
× 100 (8)

The exploration in deriving power efficiency has laid the foundation for this essay. This foun-

dation allows incorporating the important concept of angular velocity.

3 Extending Power Efficiency

Investigations in fluid mechanical systems incorporate coefficients, as they allow simplifying

power performance equations (Gessow & Myers, 1985). The thrust coefficient (cT ) recognises

ratio between total thrust produced and cross-sectional area (9). Similarly, power coefficient

recognises ratio between power required and cross-sectional area (9). These coefficients recog-

nise blade velocity in circular motion, vblade = ωR, where ω represents the blade’s angular

velocity. Also notice, these equations are non-dimensional thus, have no unit.

Thrust coefficient: T = cTρπR
2(ωR)2 Power coefficient: P̄ = cPρπR

2(ωR)3

cT =
T

ρπR2(ωR)2
cP =

P̄

ρπR2(ωR)3
(9)

In order to substitute the coefficients for power efficiency, we first require to express induced

velocity in terms of the coefficients. Therefore, induced velocity from (6) simplifies to (10).

vi =

√
T

2ρπR2
=

√
cTρπR2(ωR)2

2ρπR2

vi = ωR

√
cT
2

(10)

Substituting induced velocity (10), thrust and power coefficient in (8), we obtain a simplified
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form of power efficiency (11).

η =

√
c3
T

2c2
P

× 100 = 70.7× c
3
2
T

cP
(11)

The sections hereafter are based on calculating thrust and power coefficients to determine

a relationship between power efficiency and angular velocity (ω).

4 Slipstream Correction for Pitch Angle

Figure 3: A modified approach to the slipstream model.

Pitch angle/ pitch (θ) refers to the

angle a blade makes with the hor-

izontal (x-axis). Empirical analy-

sis confirms, thrust cannot be pro-

duced without pitch (Venkatesan,

2012). Unified thrust in (5) as-

sumes a zero pitch system hence, it

fails to satisfy properties changing

with pitch. These properties are

illustrated in figure 3 and table 1.

Properties changed Description

Angular velocity (ω) A blade rotating through air, is similar to air

flowing across a stationary blade with angu-

lar velocity (ω) and tangential velocity (ωr),

depending on the radial position of blade (r).

Inflow velocity (vi and ωr) Along with induced velocity (z-plane), air

also has tangential velocity: ωr (x-y plane).

The vector sum of velocities is resultant ve-

locity, vR (12).

Table 1: Properties that change in a system when implementing a blade pitch angle

vR =
√
v2
i + (ωr)2 (12)

Due to these properties, pitch comprises of inflow angle of attack (Inflow AoA (φ)) and

angle of attack (AoA (α)), demonstrated in figure 4 and (13). The inequality θ > φ and θ > α
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holds true, hence by small angle approximation the quotient of induced and tangential velocity;

tanφ approximately equal φ (14). As inflow AoA is small, so is induced velocity and therefore

resultant velocity in (12) is best approximated by tangential velocity (15).

θ = φ+ α (13)

tanφ =
vi
ωr
≈ φ (14)

vR ≈ ωr (15)

Figure 4: A diagram in which (a) deconstructs the angles in relation with the blades, (b) interprets
the blades free body diagram.

The force perpendicular to airflow is lift (L) and a new force parallel to airflow also exists,

termed drag (D), figure 4. The vertical component of lift and drag produces thrust. As the

inflow AoA is insignificant (φ ≈ 0), trigonometric ratios reduce to cosφ → 1 and sinφ → 0.

Hence, thrust approximately equals lift (16).

T = L cosφ+D sinφ
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T ≈ L (16)

5 Determining Thrust Coefficient

Realise, the force orthogonal to airflow is lift, corresponding with Bernoulli’s principle (2).

L =
1

2
Aρv̄2

Substituting resultant velocity (15) in lift, we recognise as radial position (r) increases from hub

(r = 0) to tip (r = R), lift also increases with each blade element (dr). This implies lift is non-

uniformly produced along the blade. The blade element theory suggests, the cumulative sum of

all blade elements is total lift and hence, we integrate (Gessow & Myers, 1985). Furthermore,

the blade element area is rectangular and therefore product of infinitesimal length (dr) and

chord width (C), figure 3.

L =

∫ R

0

1

2
Cρ(ωr)2dr

Incorporating an empirical factor known as lift coefficient (cL) allows accounting for NACA

0015 aerofoil geometry used in our experiment (see section 7). The lift coefficient is a first order

function when mapped with AoA (α) and passes through origin (α, cL) : (0,0) (Venkatesan,

2012). The function is y = mx ⇐⇒ cL = aα, where ’a’ is the lift-curve gradient. We make

AoA subject of (13) and further substitute inflow AoA (14) for lift.

L =

∫ R

0

1

2
Cρ(ωr)2cLdr =

∫ R

0

1

2
Cρ(ωr)2aαdr

α = θ − φ =⇒ θ − vi
ωr

L =

∫ R

0

1

2
Cρ(ωr)2a(θ − vi

ωr
)dr

We simplify lift and remove constants outside the integral. Since, lift only considers force from

one blade, multiplying by 2 yields total lift. As lift-thrust identity (15) holds true, total lift

approximates thrust (17).

L =
1

2
Cρa

∫ R

0

θ(ωr)2 − vi(ωr)dr

11



T = Cρa

∫ R

0

θ(ωr)2 − vi(ωr)dr (17)

Lastly, we can now determine the corrected thrust coefficient using (9), by substituting for

corrected thrust (17). Realise by dividing the fraction, we obtain a new variable, r̄ = r
R

(Venkatesan, 2012). Hence, boundary conditions change; lower limit limr→0 r̄ = 0 and upper

limit limr→R r̄ = 1.

cT =
T

ρπR2(ωR)2
=⇒

Cρa
∫ R

0
θ(ωr)2 − vi(ωr)dr
ρπR2(ωR)2

cT =
Ca

πR

∫ 1

0

(θ(r̄)2 − vi
ωR

(r̄))dr̄

To further simplify, we assume inflow AoA φ = vi
ωr
≈ vi

ωR
. This assumption is valid as mag-

nitude for tangential velocity along the blade (ωr) approximates to at the tip (ωR), since

dynamic pressure is significantly larger at tip due to their proportionality. Substituting this

approximation and solving the integral we obtain thrust coefficient (18).

cT =
Ca

πR

∫ 1

0

(θr̄2 − φr̄)dr̄ =
Ca

πR

[
θr̄3

3
− φr̄2

2

]1

0

cT =
Ca

πR
(
θ

3
− φ

2
) (18)

Since, chord width (C = 0.0180 ± 0.00500m), radius of blade (R = 0.0900 ± 0.00500m) and

pitch (θ = 0.157 ± 0.00900rad) are measured variables in the experiment (see section 7), we

require to know inflow angle of attack and lift-curve gradient to determine thrust coefficient.

5.1 Determining inflow angle of attack

We still assume φ = vi
ωr
≈ vi

ωR
to keep inflow AoA constant with radial position, otherwise the

investigation becomes convoluted. Notice, (10) from section 3 can be rearranged to the form

vi
ωR

, which by our assumption approximates inflow AoA.

vi = ωR

√
cT
2

=⇒ φ ≈ vi
ωR

=

√
cT
2
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Substituting thrust coefficient (18) and lift-curve gradient, a = 2π (explained in section 5.2),

we express inflow AoA as a quadratic.

φ2 =
cT
2

=
Ca

2πR
(
θ

3
− φ

2
)

(
2πR

Ca
)φ2 + (

1

2
)φ− θ

3
= 0

(
R

C
)φ2 + (

1

2
)φ− θ

3
= 0

Replacing values measured in experiment (see section 7) forms a quadratic (19).

5.00φ2 + 0.500φ− 0.0520 = 0 (19)

The steps for error propagation are demonstrated bellow.

Fractional uncertainty for numerator. ∆R
R

= 0.00500
0.0900

= 0.0560m

Fractional uncertainty for denominator. ∆C
C

= 0.00500
0.0180

= 0.278m

Sum of fractional uncertainties for numerator

and denominator is that for coefficient of φ2.
∆R
R

+ ∆C
C

= 0.334

Absolute uncertainty for coefficient, rounded

to 3.sig.fig.
∆R
C

= 1.70m

Fractional uncertainty for y-intercept equals

fractional uncertainty for pitch.
∆θ
θ

= 0.00900
0.157

= 0.0573m

Absolute uncertainty for y-intercept is

rounded to 3.sig.fig similar to y-intercept.
∆ θ

3
= 0.00300m

(5.00± 0.170)φ2 + 0.500φ− (0.0520± 0.00300) = 0

We obtain an original, maximum, minimum value for inflow AoA after implementing the

uncertainties and graphically solving them with domain (0,∞). The original quadratic (19)

yields φ = 0.0640rad (figure 5a).

5.00φ2 + 0.500φ− 0.0520 = 0
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The maximum quadratic yields φ = 0.0740rad (figure 5b).

3.30φ2 + 0.500φ− 0.0490 = 0

The minimum quadratic yields φ = 0.0560rad (figure 5c).

6.70φ2 + 0.500φ− 0.0550 = 0

(a) y = (5.00)φ2 + (0.500)φ− (0.0520) = 0 (b) y = (3.30)φ2 + (0.500)φ− (0.0490) = 0 (c) y = (6.70)φ2 + (0.500)φ− (0.0550) = 0

Figure 5: Graphs to determine inflow AoA (φ).

Hence, a good approximation for inflow AoA is the mean (φ̄) of range and for uncertainty

is unbiased standard deviation (σφ) demonstrated below.

φ̄ =
φ1 + φ2 + φ3

3
=

0.056 + 0.064 + 0.074

3
= 0.0650

σφ =

√
(φ1 − φ̄)2 + (φ2 − φ̄)2 + (φ3 − φ̄)2

N − 1

σφ =

√
(0.056− 0.065)2 + (0.064− 0.065)2 + (0.074− 0.065)2

2
= 0.00903

Therefore, inflow AoA, φ = 0.0650± 0.00903 to 3.sig.fig.

5.2 Determining lift-curve gradient

The lift-curve gradient accounts for resistive forces caused by the blade’s (aerofoil) geome-

try. Air resistance results from skin friction and form drag creating turbulence, figure 6.

Turbulence decreases tangential velocity, proportionally decreasing dynamic pressure (Admin-

istration, 2020). By Froude’s argument this decreases thrust.

The industrially averaged magnitude for lift-curve gradient is a = 2π, for all angular veloc-
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ities and aerofoil (Scott, 2018). The lift-curve gradient of lift coefficient against AoA (cL vs α)

graph can be found using XFOIL; a fluid simulation programme. XFOIL develops unique

environment for varying angular velocities of a rotor based on Reynolds number (Re), which

predicts airflow patterns (Halliday et al., 2014). After undergoing a mathematical process (see

Appendix 1), Reynolds number is found using simplified form (20).

Re = 1266.98(ωR) (20)

Figure 6: Air resistance forces which occur decreasing resultant velocity.

To determine Reynolds number, we require to define angular velocities to simulate in

XFOIL. The experiment in section 7, uses revolutions per minute (RPM min−1) as a rela-

tive measure for angular velocity. The experiment uses a motor with an operational range

from 0− 7000 RPM , where tests are conducted in increments of 250 RPM . We will therefore

simulate within the operational range and the same increments. RPM determines frequency

of revolution, hence conversion to angular velocity requires the factor 2π
60

. A sample set of

conversions is shown in table 2, where values are rounded to RPM of lowest significant figure.

Substituting angular velocities, we obtain Reynolds numbers displayed in sample table 2 (see
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Appendix 2). Error propagation is unnecessary as XFOIL does not recognise error, decreasing

confidence in lift-curve gradient.

Revolutions per

minute (RPM)

Angular

velocity (ω)

Tangential

velocity (ωR)

Reynolds

Number (Re)

/min−1 /rad s−1 /m s−1 -

0 0 0 0

250 26 2.4 30̄00

500 50 5 6000

750 79 7.1 90̄00

1000 100 10 10000

... ... ... ...

Table 2: A table determining Reynolds number

Reporting Reynolds number to XFOIL, a simulation is produced in one tab (see figure 7a)

and a cL vs α table in the other. The table is then converted to a graph (see figure 7b), which

uses 26 rads−1 as an example. A linear regression line is graphed to verify linearity, which as

indicated by Pearson correlation coefficient r = 0.998 is very strong. However, a systematic

error is observed as the regression line intersects y-axis at (α, cL) : (0,−0.007), but not the

origin. The difference between y-intercepts is negligible, hence the graph can be considered

reliable. The lift-curve gradient for 26 rads−1 is a = 1.47 to 3.sig.fig. The remaining angular

velocities are found with a similar process, shown in sample table 3 (see Appendix 3).

(a) An illustration of XFOIL simulation for 26rads−1. (b) A lift cL vs αc graph.

Figure 7: Simulation and analysis of data from XFOIL.
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Angular

velocity (ω)

Tangential

velocity (ωR)

Reynolds

Number (Re)

Lift-curve

gradient (a)

/rad s−1 /m s−1 - -

0 0 0 0

26 2.4 3000 1.47

50 5 6000 1.28

79 7.1 9000 1.23

100 10 10000 1.22

... ... ... ...

Table 3: A table determining lift-curve gradient

Data from table 3 is quantitatively demonstrated as a graph in figure 8. The mean for all lift-

curve gradient points is represented as a mean line (atheo = 4.81). An industrially agreed mean

line is also illustrated (aemp = 2π = 6.28). The data points < atheo (0−222rads−1) shows a the-

oretically inefficient range, as a great proportion of work is lost to turbulence, which decreases

dynamic pressure. Similarly, data points between atheo and aemp (222− 240rads−1 and 431−

733rads−1) indicates an ideal range, as predominant amount of work is used to generate thrust.

Lastly, data points > aemp (240 − 431rads−1) represents an efficient range, as resistive forces

insignificantly impact dynamic pressure and therefore, most work generates thrust.

Figure 8: The relationship between angular velocity and lift-curve gradient.
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5.3 Determining thrust coefficient

Recalling (18), we can now find the thrust coefficient with respect to angular velocity. However,

the thrust coefficient is theoretically deduced and fails to recognise mechanical losses for e.g.

bearing friction. This requires to implement a constant k = 1.75 (Venkatesan, 2012).

cT = k
Ca

πR
(
θ

3
− φ

2
)

Substituting values for the variable’s, we obtain thrust coefficient demonstrated in table 4

(see Appendix 4). The thrust coefficient is calculated to 3.sig.fig, as the variable with smallest

significant figure. Uncertainty for the thrust coefficient are found with steps bellow.

Fractional uncertainty for multiplicand (Ca
πR

) is

that for C
R

, as other variables have zero uncertainty.

∆Ca
πR
Ca
πR

= 0.334 derived from section 5.1.

Fractional uncertainty for θ
3

is that for pitch. ∆θ
θ

= 0.00900
0.157

= 0.0573

Absolute uncertainty for θ
3
. ∆ θ

3
= 0.00300

Same steps for absolute uncertainty of φ
2
. ∆φ

2
= 0.00400

Absolute uncertainty for θ
3
− φ

2
. ∆ θ

3
− φ

2
= 0.00300 + 0.00400 = 0.00700

Fractional uncertainty for multiplier.
∆ θ

3
−φ

2
θ
3
−φ

2

= 0.00700
0.0200

= 0.350

Fractional uncertainty for thrust coefficient is sum

of the fractional uncertainty for multiplicand and

multiplier.

∆cT
cT

= 0.334 + 0.350 = 0.684

Percentage uncertainty for thrust coefficient ∆cT% = 68.4%

Air screw

geometry (R, C)

Air screw angles

(θ, φ)

Angular

velocity (ω)

Lift-curve

gradient (a)

Thrust

coefficient (cT )

/m /rad /rad s−1 - -

±0.00500,±0.00500 ±0.00900,±0.00900 - - 68.4%

0.0900, 0.0180 0.157, 0.0650

0 0 0

26 1.47 0.00359

50 1.28 0.00313

79 1.23 0.00301

100 1.22 0.00299

... ... ...

Table 4: A table demonstrating the thrust coefficient cT based on it’s constituent angular velocity (ω).
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The data from table 4 is quantitatively represented as a graph in figure 9. The trend closely

corresponds with lift-curve gradient against angular velocity graph in figure 8. The mean of

all thrust coefficient data points is illustrated through a mean line. Although error bars are

substantially large, the inefficient range is positioned below mean line and opposite is true for

ideal and efficient ranges providing confidence with our speculations.

Figure 9: The relationship between angular velocity and thrust coefficient.

6 Determining Power Coefficient

The power determined in (7) is unsatisfactory, as it omits variables such as, resultant velocity

and air resistance. Hence, we will consider a new approach, which focuses on the revolution of

airscrew. Power is tangential force (F ) experienced by an aerofoil along a distance (s) divided

by time elapsed (∆t) to travel the distance (see figure 10a).

P̄ = Fv =
Fs

∆t

The magnitude of arc length travelled can be expressed as s = βR, where the aerofoil

revolves an angle β in ∆t time. Notice, β
∆t

is definition of angular velocity. Power is therefore
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Figure 10: A modified approach for power coefficient.

product of tangential force and velocity.

P̄ =
FβR

∆t
= F (ωR)

Additionally, considering air as frame of reference,

tangential force is the horizontal component of lift and

drag, figure 10b. The small angle approximation for

inflow AoA simplifies sinφ → φ and cosφ → 1. Lift

and drag can be expanded using blade element theory,

integrating along the blade’s length. The expanded

expression for drag is equivalent to lift, except for

drag coefficient (cD) (Gessow & Myers, 1985).

P̄ = ωR

[∫ R

0

(L sinφ+D cosφ)dr

]
= ωR

∫ R

0

(Lφ+D)dr

P̄ = ωR

∫ R

0

(
1

2
Cρ(ωr)2cL)φdr +

∫ R

0

1

2
Cρ(ωr)2cDdr

P̄ =
1

2
CρωR

[
aφ

∫ R

0

θ(ωr)2 − vi(ωr)dr +

∫ R

0

(ωr)2cDdr

]
We multiply power equation by two, in order to consider both blades (21). Substituting

power within power coefficient from (9) and dividing by denominator, we observe the variable

r̄ = r
R

. The boundary conditions change (see Section 5).

P̄ = CρωR

[
aφ

∫ R

0

θ(ωr)2 − vi(ωr)dr +

∫ R

0

(ωr)2cDdr

]
(21)

cP =
P̄

ρπR2(ωR)3
=
CρωR

[
aφ
∫ R

0
θ(ωr)2 − vi(ωr)dr +

∫ R
0

(ωr)2cDdr
]

ρπR2(ωR)3

cP = φ

∫ 1

0

Ca

πR
(θr̄2 − φr̄)dr +

∫ 1

0

C

πR
(r̄3cD)dr

Notice, the first integral simplifies to thrust coefficient (18). Solving the integral, we obtain

power coefficient (22).

cP = φcT +

∫ 1

0

C

πR
(r̄3cD)dr
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cP = φcT +
C

4πR
cD (22)

The power coefficient can only be found, after determining drag coefficient.

6.1 Determining drag coefficient

The drag coefficient incorporates resistive forces acting on a NACA 0015 aerofoil. Similar to

lift coefficient, drag coefficient is found using XFOIL. After inserting the calculated Reynolds

numbers (table 3), a cD vs α table is generated. Since, AoA is α = θ − φ = 0.157− 0.0650 =

0.0920rad, we select drag coefficients at α = 0.0920rad for all angular velocities displayed in

sample table 5 to 3 sig.fig (see Appendix 5). Uncertainty is not calculated as XFOIL doesn’t

recognise error, decreasing confidence with drag coefficient.

Angular

velocity (ω)

Tangential

velocity (ωR)

Reynolds

Number (Re)

Lift curve

gradient (a)

Drag

coefficient

(cD)

/rad s−1 /m s−1 - - -

0 0 0 0 0.0933

26 2.4 30̄00 1.47 0.0756

50 5 6000 1.28 0.0683

79 7.1 90̄00 1.23 0.0642

100 10 10000 1.22 0.0616

... ... ... ... ...

Table 5: A table demonstrating drag coefficient (cD) based on its constituent angular velocity (ω).

6.2 Determining power coefficient

We can now calculate power coefficient (22). Recall from section 5.3, in order to consider

mechanical losses we incorporate constant k = 1.75.

cP = k(φcT +
C

4πR
cD)

Substituting for the variables, we obtain power coefficient demonstrated in sample table 7

(see Appendix 6). Uncertainty calculations are displayed bellow to 3 sig.fig, similar to variable

with lowest significant figure. However, we make an exception and increase significant figures

of angular velocity to 3 sig.fig, for maximising accuracy and precision when analysing data.
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Fractional uncertainty for inflow AoA. ∆φ
φ

= 0.00903
0.0650

= 0.138rad

Sum for the fractional uncertainties of φ and cT

is that for φcT .
∆φcT
φcT

= 0.138 + 0.684 = 0.822

Absolute uncertainty for φcT varies as cT

changes with angular velocity. Example for

ω = 26.2 and rest shown in sample table 6.

φcT = 0.000233 ∆φcT =

0.000233(0.822) = 0.000195

Fractional uncertainty for C
4πR

cD is equivalent

to that for C
R

.

∆C
R
C
R

= 0.334 from section 5.1.

Absolute uncertainty for C
4πR

cD varies, as cD

changes with angular velocity. Example for

ω = 26.2 and rest shown in sample table 6.

C
4πR

cD = 0.00149 ∆ C
4πR

cD =

0.00149(0.344) = 0.000496

Absolute uncertainty for φcT + C
4πR

cD (22) is

sum of the absolute uncertainties for φcT and
C

4πR
cD. Example for ω = 26.2 and rest shown

in sample table 6.

∆φcT + C
4πR

cD =

0.000195 + 0.000496 = 0.00691

Fractional uncertainty for φcT + C
4πR

cD is then

allowed. Example for ω = 26.2 and rest shown

in sample table 6.

∆φcT+ C
4πR

cD

φcT+ C
4πR

cD
= 0.00691

0.00172
= 0.402

Fractional uncertainty for φcT + C
4πR

cD is equiv-

alent to that for cP .
∆cP
cP

=
∆φcT+ C

4πR
cD

φcT+ C
4πR

cD

Absolute uncertainty for cP varies with ω. Ex-

ample for ω = 26.2 and rest shown in sample

table 7.

cP = 0.00301 ∆cP =

0.00301(0.402) = 0.00121

ω φcT ∆φcT
C

4πR
cD ∆ C

4πR
cD φcT+ C

4πR
cD ∆φcT +

C
4πR

cD

∆cP
cP

26.2 0.000233 0.000195 0.00149 0.000496 0.00172 0.000691 0.402

52.4 0.000204 0.000170 0.00120 0.000402 0.00141 0.000572 0.407

78.5 0.000195 0.000164 0.00109 0.000363 0.00128 0.000526 0.411

104 0.000194 0.000162 0.00102 0.000341 0.00122 0.000504 0.414

... ... ... ... ... ... ... ...

Table 6: Determining the absolute uncertainties of variables
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Angular

velocity (ω)

Power

coefficient (cP )

Absolute

uncertainty ∆cP

rads−1 - -

0 0 0

26.2 0.00301 0.00121

52.4 0.00246 0.00100

78.5 0.00224 0.000921

104 0.00213 0.000881

... ... ...

Table 7: Determining the theoretical power coefficient and the coefficients absolute uncertainty

The data in table 7 is represented as a graph in figure 11. For a system to be power efficient,

the thrust and power to area ratio must strictly maximise and minimise respectively. The

mean of all power coefficient data points are represented as a mean line. The angular velocities

between 0 − 183rads−1 are power inefficient, as they demonstrate a low thrust (see figure 9),

but a large power coefficient. This suggests most power is used to overcome resistive forces.

Moreover, angular velocities between 183− 733rads−1 in retrospect are not power efficient, as

Figure 11: The relationship between angular velocity and power coefficient
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they have a large thrust and power coefficient. Here, most power is used to generate thrust

than lost to air resistance and therefore, has ideal efficiency contrary to speculations.

7 Determining Experimental Power Coefficient

I devised an experiment to observe power dissipated, later converted to power coefficient in

revolving a twin bladed airscrew by a brushless DC motor (BLDC motor). Thrust measure-

ments for determining thrust coefficient are not accounted, as the measuring scale provided

misleading results (see figure 12). The experiment is necessary to validate whether theoretical

data (see section 5.3 and 6.2) corresponds with experimental data. This is important, to find a

reason for large error bars seen with the coefficients, sources of error or confounding variables.

7.1 Experimental Setup

In 1920-33, the National Advisory Committee for Aeronautics (NACA) designed and tested

various standardised aerofoils (Allen, 2017). I selected their NACA 0015 aerofoil, for its sym-

metric geometry and ease to 3D print. The aerofoil was printed with dimensions stated in

table 8 and went on top of BLDC motor.

Aerofoil Geometry Properties

NACA 0015

Blade length: Radius R = 0.0900± 0.00500m

Blade length: Chord width C = 0.0180± 0.00500m

Total angle: Pitch angle θ = 0.157± 0.00900rad

Table 8: A description for the properties of NACA 0015 aerofoil

The experiment setup is represented in figure 12. An Arduino Mega 2560 microcontroller

used a preloaded code (see Appendix 9) to change RPM of motor (Nedelkovski, 2019). A

tachometer measures the frequency of reflections from a reflective adhesive on the motor, to

determine the motors RPM. A power analyser measured the total power used by load. A

camera positioned above the setup, recorded the displayed readings.

7.2 Experiment procedure

• Independent variable: Angular velocity measured in RPM.

• Dependent variable: Power dissipated in the system.
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Figure 12: The experimental setup for determining the power coefficient.

A physical limitation of the motor is, it harshly vibrated between 0 < ω ≤ 314rads−1

and 681 ≤ ω < 733rads−1 deviating the photo tachometer readings. I realised to minimise

systematic error, the testing range should be between 314 ≤ ω ≤ 681rads−1. Additionally, the

angular velocity readings never remained constant while performing preliminary tests. Hence,

I decided the experiment would be conducted in intervals of 250RPM (26.2rads−1) beginning

from 301 < ω ≤ 327rads−1 and ending with 668 < ω ≤ 694rads−1. Each interval would be

tested 5 times, for 15 seconds with a stopwatch. The data was collected from video recordings

and is displayed in Appendix 7.

7.3 Theoretical vs experimental power coefficient

The RPM were converted to angular velocity using the factor 2π
60

(see Section 5.2). The angular

velocities of an interval is best demonstrated by the mean. The mean for power measured within

the interval, is suitable for the same reasoning. Such means are demonstrated in sample table

9 for first 5 intervals. Recall, the power coefficient (9). Substituting the values from table 9

yields the experimental power coefficient, also shown in sample table 9.
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cP =
P̄

ρπR2(ω̄R)3

Angular

velocity

Mean angular

velocity (ω̄)

Mean

power ( ¯Pavg)

Experimental power

coefficient (cP )

rads−1 rads−1 kgm2s−3 -

301 < ω ≤ 327 318 2.8 0.00389

327 < ω ≤ 353 343 3.4 0.00363

353 < ω ≤ 380 367 3.7 0.00326

380 < ω ≤ 406 397 4.3 0.00302

406 < ω ≤ 432 420 4.9 0.00290

... ... ... ...

Table 9: Determining the experimental power coefficient.

The experimental and theoretical data points from table 7 and 9 are illustrated as a graph

in figure 13, with ordinates drawn to indicate the experimented range. Both curves are close

to perfect fit, as the experimental outcomes are more exaggerated deviating around 314 and

680rads−1. Nevertheless, both power coefficients have similar properties such as, a curve fit

Figure 13: An analysis between angular velocity and power coefficient
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which monotonically decreases with angular velocity. Their gradient (dcP
dω

) converges to 0

from 550 to 600rads−1 as both curves either seem to or form a plateau. Error bars are also

useful, as experimental data follows the trend well within the error bars of theoretical data.

Hence, the theoretical model closely resembles outcomes from experiment.

8 Determining Power Efficiency

Realise, we can finally determine power efficiency (11). Substituting the trust and power

coefficient, yields power efficiency displayed in sample table 10 (see Appendix 8).

η = 70.7× c
3
2
T

cP

Uncertainty for power efficiency is propagated with steps displayed below.

Fractional uncertainty for numerator c
3
2
T .

∆c
3
2
T

c
3
2
T

= 3
2
(∆cT
cT

) = 1.50(0.684) = 1.09

Fractional uncertainty for denominator cP is

demonstrated in table 6

Fractional uncertainty for power efficiency (η)

is sum of the fractional uncertainties for nu-

merator c
3
2
T and denominator cP . An example

is ω = 26.2rads−1 and rest are shown in table

10.

∆η
η

=
∆c

3
2
T

c
3
2
T

+∆cP
cP

= 1.09+0.00301 = 1.49

The absolute uncertainty for power efficiency

can then be found. An example is ω =

26.2rads−1 and rest are shown in table 10.

η = 5.05 ∆η = 5.05(1.49) = 7.54

Angular

velocity (ω)

Power

efficiency (η)

Fractional

uncertainty (∆η
η

)

Absolute

uncertainty (∆η)

rads−1 kgm2s−3 - kgm2s−3

26.2 5.05 1.49 7.54

52.4 5.04 1.50 7.54

78.5 5.20 1.50 7.80

105 5.42 1.50 8.15

... ... ... ...

Table 10: Calculations for determining the power efficiency of our twin bladed single rotor helicopter system.
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Table 10 is then converted to a power efficiency against angular velocity graph in figure 14.

The general trend line increases and plateaus in a regular succession. Power efficiency at

Figure 14: The relationship between power efficiency and angular velocity.

smaller angular velocities (0−157rads−1) are an order of magnitude inefficient than at larger

ones (314−733rads−1) confirming the inefficient and ideal ranges, respectively. The maximum

efficiency peaks at 54.6%, just under the maximum possible efficiency by Betz limit at 59.3%

(Burton, 2009). Negative uncertainties cannot exist. As aforementioned, large uncertainties

are caused by exhaustively using multiple equations to reach this relationship. Hence, the data

quality is not compromised.

9 Evaluation and Conclusion

In investigating the research question, we decided to determine power efficiency with the thrust

and power coefficient, resulting in many interesting observations.

Firstly, we found a limitation with Froude’s model, in that it assumed a zero pitch system,

omitting internal forces and velocities. Hence, modifications such as blade element theory were

made to implement pitch, enhancing the correlation between empirical and theoretical data.
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In determining the thrust coefficient, XFOIL allowed to find lift-curve gradient and an anal-

ysis with industrial specification. This categorised angular velocity into an inefficient, ideal

and efficient range, where smaller angular velocities in comparison to larger angular veloci-

ties required a substantial amount of power to overcome resistive forces. The power coefficient

showed similar efficiencies, except for the efficient range. The experiment validated the theoret-

ical ranges and also realised the large uncertainties were of a purely mathematical consequence.

Hence, the inefficient and ideal ranges were confirmed as maximum power efficiency peaked

only at 54.6%. However, a limitation with experiment was the small experimented range, not

allowing a full comparison with theoretical model.

In conclusion a clear proportionality is visible between angular velocity and power efficiency

for a twin bladed single rotor helicopter in hover. As we increase angular velocity, power

efficiency increases then plateaus and repeats the same trend once again.

This investigation is not completely accurate, due to uncertainties and limitations. A part

of these uncertainties arise from assumptions made with the theoretical model. For instance,

assuming thrust linearly increases along the blade. Empirically, the tip produces negligible

thrust, as the substantial dynamic pressure differential occurs from 20 to 80% of the blade

(Adminstration, 2020). Secondly, a vortex known as induced drag is formed at the blade’s

tip, which moderately increases air resistance. This was not implemented in XFOIL adding

unaccounted systematic error (Adminstration, 2020). Thirdly, the motor harshly vibrated at

the first (301 < ω ≤ 327rads−1) and last interval (668 < ω ≤ 694rads−1), influencing the

tachometer and power analyser, causing random error in data. This may explain deviations at

start and end of the experimental power coefficient. However, I realised, seeking for a perfect

match with experimental data is ambitious, as the investigation then becomes an extraneous

mathematical process, reducing its ability to explain physics.

This investigation raises many questions, including one which initially inspired me: what

angular velocity against power efficiency relationship can geometrically varied aerial vehicles

such as, bicopter and tricopter demonstrate? Irregularly positioning rotor systems, makes the

slipstream geometry unique and transcends the scope of this investigation. Many interesting

problems arise, as the rotors must produce variable thrust to balance while hovering. Such an

investigation would be incredibly interesting.
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11 Appendix  
 

11.1 Appendix 1: Simplifying Reynolds Number 

 
Reynolds number measures airflow patterns, based on the properties of air. In fluid 

mechanics one form Reynolds number can take is displayed bellow. Here, 𝜈 is kinematic 

viscosity, 𝑣𝑅 is resultant velocity of airfoil and 𝐶 is chord length. Kinematic viscosity of air at 

sea level and normal room temperature is: 𝜈 = 1.42 × 10−5.  

𝑅𝑒 =  
𝐶𝑣

𝜈
 

We substitute the value for variables from section 7 and use resultant velocity (15). 

However, realise 𝑣𝑅 = 𝜔𝑟 ≈ 𝜔𝑅, as dynamic pressure is substantially large at the tip and 

approximately equal to that across the blade. Hence, by venturi effect tangential velocity at 

tip is also approximately equal to that across the blade. 

𝑅𝑒 =  
(0.0180)𝜔𝑟

0.0000142
 

𝑅𝑒 =  
(0.0180)𝜔𝑅

0.0000142
 =  1266.98𝜔𝑅 
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11.2 Appendix 2: Conversion between Angular Velocity and Reynolds Number 
 

Revolution per 

minute (RPM) 

Angular 

velocity (ω) 

Tangential 

velocity (ωR) 

Reynolds 

Number (Re) 

/𝒎𝒊𝒏−𝟏 /𝒓𝒂𝒅𝒔−𝟏 /𝒎𝒔−𝟏 - 

0 0 0.0 0 

250 26 2.4 2991 

500 52 4.7 5982 

750 79 7.1 8972 

1000 105 9.4 11963 

1250 131 11.8 14954 

1500 157 14.1 17945 

1750 183 16.5 20935 

2000 209 18.8 23926 

2250 236 21.2 26917 

2500 262 23.6 29908 

2750 288 25.9 32899 

3000 314 28.3 35889 

3250 340 30.6 38880 

3500 367 33.0 41871 

3750 393 35.3 44862 

4000 419 37.7 47853 

4250 445 40.1 50843 

4500 471 42.4 53834 

4750 497 44.8 56825 

5000 524 47.1 59816 

5250 550 49.5 62806 

5500 576 51.8 65797 

5750 602 54.2 68788 

6000 628 56.5 71779 

6250 654 58.9 74770 

6500 681 61.3 77760 

6750 707 63.6 80751 

7000 733 66.0 83742 
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11.3 Appendix 3: Determination of Lift-curve Gradient 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Angular 

velocity (ω) 

Tangential 

velocity (ωR) 

Reynolds 

Number (Re) 

Lift-curve 

gradient (a) 

/𝒓𝒂𝒅𝒔−𝟏 /𝒎𝒔−𝟏 - - 

0 0.0 0 0.00 

26 2.4 2991 1.47 

52 4.7 5982 1.28 

79 7.1 8972 1.23 

105 9.4 11963 1.22 

131 11.8 14954 1.23 

157 14.1 17945 1.25 

183 16.5 20935 3.06 

209 18.8 23926 4.28 

236 21.2 26917 5.14 

262 23.6 29908 6.14 

288 25.9 32899 7.13 

314 28.3 35889 7.66 

340 30.6 38880 7.60 

367 33.0 41871 7.26 

393 35.3 44862 6.84 

419 37.7 47853 6.51 

445 40.1 50843 6.02 

471 42.4 53834 5.69 

497 44.8 56825 5.42 

524 47.1 59816 5.27 

550 49.5 62806 5.25 

576 51.8 65797 5.26 

602 54.2 68788 5.36 

628 56.5 71779 5.44 

654 58.9 74770 5.52 

681 61.3 77760 5.62 

707 63.6 80751 5.70 
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11.4 Appendix 4: Determination of Thrust Coefficient 
 

Air screw geometry 

(𝑹, 𝑪) 

Aircrew Angles 

(𝜽, 𝝓) 

Angular 

velocity (ω) 

Gradient of 

lift-curve (a) 

Thrust 

Coefficient (𝒄𝑻) 

/𝒎 /𝒓𝒂𝒅 /𝒓𝒂𝒅𝒔−𝟏 - - 

± 0.00500, ±0.00500 ±0.00900, ±0.00900 - - 68.40% 

0.0900, 0.0180 

0.157, 0.0650 

 

0 0.00 0.00000 

26 1.47 0.00359 

52 1.28 0.00313 

79 1.23 0.00301 

105 1.22 0.00299 

131 1.23 0.00301 

157 1.25 0.00305 

183 3.06 0.00747 

209 4.28 0.01044 

236 5.14 0.01253 

262 6.14 0.01497 

288 7.13 0.01738 

314 7.66 0.01870 

340 7.60 0.01854 

367 7.26 0.01772 

393 6.84 0.01670 

419 6.51 0.01588 

445 6.02 0.01470 

471 5.69 0.01387 

497 5.42 0.01321 

524 5.27 0.01287 

550 5.25 0.01281 

576 5.26 0.01284 

602 5.36 0.01308 

628 5.44 0.01327 

654 5.52 0.01347 

681 5.62 0.01371 

707 5.70 0.01391 

733 5.82 0.01420 
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11.5 Appendix 5: Determination of Drag Coefficient 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Angular 

velocity (ω) 

Tangential 

velocity (ωR) 

Reynolds 

Number (Re) 

Lift-curve 

gradient (a) 

Drag 

coefficient (𝒄𝑫) 

/𝒓𝒂𝒅𝒔−𝟏 /𝒎𝒔−𝟏 - - - 

0 0.0 0 0.00 0.0000 

26 2.4 2991 1.47 0.0933 

52 4.7 5982 1.28 0.0756 

79 7.1 8972 1.23 0.0683 

105 9.4 11963 1.22 0.0642 

131 11.8 14954 1.23 0.0616 

157 14.1 17945 1.25 0.0598 

183 16.5 20935 3.06 0.0664 

209 18.8 23926 4.28 0.0658 

236 21.2 26917 5.14 0.0623 

262 23.6 29908 6.14 0.0568 

288 25.9 32899 7.13 0.0490 

314 28.3 35889 7.66 0.0421 

340 30.6 38880 7.60 0.0376 

367 33.0 41871 7.26 0.0345 

393 35.3 44862 6.84 0.0321 

419 37.7 47853 6.51 0.0302 

445 40.1 50843 6.02 0.0289 

471 42.4 53834 5.69 0.0275 

497 44.8 56825 5.42 0.0266 

524 47.1 59816 5.27 0.0256 

550 49.5 62806 5.25 0.0249 

576 51.8 65797 5.26 0.0241 

602 54.2 68788 5.36 0.0235 

628 56.5 71779 5.44 0.0229 

654 58.9 74770 5.52 0.0224 

681 61.3 77760 5.62 0.0219 

707 63.6 80751 5.70 0.0215 
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11.6 Appendix 6: Determination of Power Coefficient 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Angular 

velocity (ω) 

Power 

coefficient (𝒄𝑷) 

Absolute 

uncertainty 𝚫𝒄𝑷 

/𝒓𝒂𝒅𝒔−𝟏 - - 

0 0 0 

26 0.00172 0.001209 

52 0.00141 0.001001 

79 0.00128 0.000921 

105 0.00122 0.000881 

131 0.00118 0.000860 

157 0.00115 0.000847 

183 0.00154 0.001328 

209 0.00173 0.001605 

236 0.00181 0.001772 

262 0.00188 0.001954 

288 0.00191 0.002111 

314 0.00188 0.002172 

340 0.00180 0.002116 

367 0.00170 0.002008 

393 0.00160 0.001889 

419 0.00151 0.001793 

445 0.00142 0.001668 

471 0.00134 0.001576 

497 0.00128 0.001505 

524 0.00124 0.001463 

550 0.00123 0.001451 

576 0.00122 0.001447 

602 0.00122 0.001464 

628 0.00123 0.001476 

654 0.00123 0.001491 

681 0.00124 0.001510 

707 0.00125 0.001524 
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11.7 Appendix 7: Raw Experimental Data 
 

# 2875 < rpm 

≤ 3125 

Power 3125 < rpm 

≤ 3375 

Power 3375 < rpm 

≤ 3625 

Power 3625 < rpm 

≤ 3875 

Power 

1 3017 2.9 3267 3.2 3417 3.3 3736 4.2 

2 3017 3.1 3269 3.3 3434 3.5 3737 4.3 

3 3018 3.0 3269 3.3 3436 3.1 3738 4.4 

4 3019 3.3 3270 3.3 3445 3.5 3739 4.2 

5 3020 3.1 3271 3.4 3447 3.8 3740 4.3 

6 3022 2.7 3271 3.3 3450 3.8 3740 4.3 

7 3022 2.8 3272 3.4 3453 3.5 3742 4.4 

8 3023 2.9 3272 3.4 3453 3.7 3742 4.3 

9 3029 2.8 3272 3.3 3459 3.7 3743 4.3 

10 3030 2.8 3273 3.1 3460 3.7 3753 4.2 

11 3039 3.2 3275 3.4 3461 3.6 3758 4.3 

12 3040 3.2 3276 3.4 3462 3.8 3759 4.1 

13 3042 2.4 3277 3.4 3464 3.6 3760 4.3 

14 3042 3.0 3278 3.3 3472 3.3 3761 4.2 

15 3043 2.7 3282 3.3 3474 3.8 3761 4.2 

16 3043 2.7 3292 3.6 3478 4.0 3761 4.2 

17 3044 2.4 3296 3.4 3496 3.8 3762 4.2 

18 3044 2.8 3298 3.3 3500 3.3 3764 4.4 

19 3044 2.6 3298 3.6 3516 3.7 3765 4.2 

20 3045 2.4 3299 3.4 3517 3.4 3765 4.2 

21 3045 2.8 3300 3.4 3518 3.8 3766 4.3 

22 - 
 

- - 3536 3.6 3767 4.2 

23 - - - - 3538 3.6 3768 4.3 

24 - - - - 3540 3.8 3773 4.4 

25 - - - - 3541 3.8 3851 4.5 

26 - - - - 3546 3.8 3854 4.3 

27 - - - - 3547 3.7 3855 4.3 

28 - - - - 3548 3.7 3855 4.4 

29 - - - - 3548 3.7 3856 4.4 

30 - - - - 3548 3.8 3857 4.4 

31 - - - - 3549 3.8 3863 4.4 

32 - - - - 3549 3.9 3864 4.4 

33 - - - - 3550 3.8 3866 4.4 

34 - - - - 3552 3.8 3867 4.4 

35 - - - - 3553 3.6 3867 4.4 

36 - - - - 3556 3.8 3875 4.4 

37 - - - - 3559 3.8 - - 

38 - - - - 3567 3.8 - - 

39 - - - - 3575 3.9 - - 
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# 3875 < rpm 

≤ 4125 

Power 4125 < rpm 

≤ 4375 

Power 4375 < rpm 

≤ 4625 

Power 4625 < rpm 

≤ 4875 

Power 

1 3964 4.9 4141 5.5 4478 5.6 4699 6.4 

2 3965 4.9 4157 5.2 4479 5.7 4705 6.5 

3 3966 4.8 4161 5.3 4482 5.6 4708 6.2 

4 3971 4.9 4165 5.4 4484 5.7 4708 6.2 

5 3973 5.2 4165 5.4 4485 5.8 4709 6.4 

6 3973 4.9 4167 5.2 4485 5.6 4710 6.5 

7 3974 4.9 4167 5.5 4486 5.6 4711 6.5 

8 3974 4.9 4169 5.2 4486 5.5 4712 6.4 

9 3975 4.9 4169 5.3 4488 5.6 4712 6.5 

10 3975 5.1 4259 5.3 4488 5.5 4713 6.0 

11 3975 5.1 4261 5.1 4489 5.5 4713 6.5 

12 3977 4.7 4262 4.9 4489 5.7 4714 6.5 

13 3977 4.8 4263 5.5 4490 5.6 4714 6.0 

14 3978 4.9 4263 5.5 4494 5.6 4715 6.2 

15 3978 4.8 4263 5.4 4535 6.3 4716 6.5 

16 3978 4.8 4264 5.4 4537 6.0 4716 6.4 

17 3979 4.9 4264 5.5 4539 6.3 4717 6.5 

18 3980 4.9 4264 5.5 4541 6.0 4719 6.6 

19 3980 4.9 4264 5.3 4541 5.7 4719 6.5 

20 3981 5.1 4264 5.3 4546 6.0 4720 6.0 

21 3981 4.7 4265 5.4 4547 5.9 4720 6.4 

22 3981 5.0 4265 5.2 4547 5.8 4721 6.5 

23 3983 4.8 4265 5.2 4548 6.3 4723 6.0 

24 3984 4.8 4266 5.5 4549 6.3 4724 5.9 

25 3984 4.8 4266 5.6 4550 6.1 4725 6.2 

26 4024 4.8 4266 5.4 4551 6.3 4726 6.0 

27 4031 4.9 4266 5.5 4551 5.9 4728 6.0 

28 4032 4.9 4267 5.6 4552 6.0 4729 6.0 

29 4037 4.8 4267 5.8 4552 5.8 4731 6.1 

30 4038 4.9 4267 5.4 4554 6.0 4732 6.4 

31 4038 4.9 4269 5.2 4555 6.3 4732 6.5 

32 4043 4.8 4270 5.7 4555 5.9 4734 6.0 

33 4044 4.9 4271 5.6 4556 6.0 4735 6.2 

34 4045 4.8 4271 5.5 4556 5.9 4862 6.6 

35 4045 5.1 4271 5.2 4557 5.9 4864 6.8 

36 4047 4.8 4274 5.3 4557 5.9 4866 6.6 

37 4047 4.9 - - 4558 6.0 4872 6.8 

38 4048 5.0 - - 4558 5.9 4873 6.6 

39 4048 4.8 - - 4559 6.0 4874 6.5 
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40 4048 4.7 - - 4559 5.8 4875 6.7 

41 4049 4.8 - - 4559 5.6 - - 

42 4050 5.0 - - 4561 5.9 - - 

43 4051 4.9 - - 4561 5.7 - - 

44 4053 5.1 - - 4561 5.8 - - 

45 4054 5.0 - - 4561 5.9 - - 

46 4055 4.9 - - 4562 6.2 - - 

47 4056 4.8 - - 4562 5.9 - - 

48 4063 4.8 - - 4562 5.9 - - 

49 - - - - 4563 5.8 - - 

50 - - - - 4563 6.0 - - 

51 - - - - 4563 5.7 - - 

52 - - - - 4564 6.0 - - 

53 - - - - 4565 6.2 - - 

54 - - - - 4565 6.0 - - 

55 - - - - 4565 5.8 - - 

56 - - - - 4565 5.9 - - 

57 - - - - 4565 5.8 - - 

58 - - - - 4565 6.0 - - 

59 - - - - 4566 6.0 - - 

60 - - - - 4566 6.0 - - 

61 - - - - 4566 5.9 - - 

62 - - - - 4566 5.7 - - 

63 - - - - 4566 5.9 - - 

64 - - - - 4567 5.8 - - 

65 - - - - 4571 6.0 - - 

66 - - - - 4572 5.8 - - 

67 - - - - 4574 5.7 - - 

68 - - - - 4580 5.9 - - 

 

# 4875 < rpm 

≤ 5125 

Power 5125 < rpm 

≤ 5375 

Power 5375 < rpm 

≤ 5625 

Power 5625 < rpm 

≤ 5875 

Power 

1 4864 6.3 5126 7.3 5417 8.5 5680 9.4 

2 4869 6.5 5127 7.2 5418 8.3 5681 9.3 

3 4873 6.1 5127 7.2 5419 8.9 5682 9.7 

4 4876 6.5 5176 7.5 5419 7.8 5682 9.3 

5 4878 6.6 5177 7.4 5422 8.2 5685 9.4 

6 4880 6.7 5179 7.5 5428 7.0 5689 9.5 

7 4881 6.8 5180 7.5 5520 8.6 5687 9.2 

8 4882 6.7 5180 7.0 5529 8.4 5691 9.5 

9 4882 6.5 5181 7.3 5531 8.8 5698 9.3 

10 4884 6.6 5182 7.4 5569 9.0 5699 9.5 

11 4886 6.7 5184 7.4 5571 8.5 5676 9.1 
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12 4886 6.5 5185 7.1 5572 9.1 5679 9.5 

13 4886 6.6 5185 7.4 5575 8.8 5682 8.5 

14 4887 6.3 5187 7.4 5576 9.1 5681 11.0 

15 4888 6.7 5232 7.8 5576 8.6 5680 7.9 

16 4901 6.8 5233 7.6 5577 9.1 5679 8.5 

17 4926 6.6 5236 7.6 5578 8.3 5683 8.0 

18 4929 6.4 5236 7.9 5578 9.0 5684 8.9 

19 4960 6.4 5237 7.7 5580 8.8 5685 9.3 

20 4975 6.5 5237 7.8 5591 8.8 5686 9.5 

21 4983 6.6 5238 7.6 5591 9.0 5692 10.1 

22 4983 6.8 5238 7.9 5595 9.0 5690 9.7 

23 4983 6.5 5239 7.6 5595 8.8 5691 9.1 

24 4984 7.0 5240 7.7 5595 9.0 5695 8.5 

25 4984 7.0 5242 7.6 5596 8.5 5696 8.5 

26 4986 6.7 5247 7.8 5609 8.8 5699 9.6 

27 4986 6.9 5248 7.7 5614 8.9 5701 9.1 

28 4987 6.6 5248 7.6 5616 8.8 5703 9.3 

29 4993 7.0 5249 7.7 - - 5703 9.7 

30 4993 6.8 5250 7.7 - - 5768 10.4 

31 4994 6.9 5251 7.6 - - 5774 9.6 

32 4998 6.8 5254 7.9 - - 5789 10.0 

33 4998 6.8 5254 8.2 - - 5791 9.3 

34 4999 6.7 5254 7.7 - - 5795 9.1 

35 5061 7.1 5254 7.6 - - 5793 9.6 

36 5062 6.8 5255 7.3 - - 5796 10.0 

37 5063 6.9 5256 7.8 - - 5797 10.2 

38 5066 6.8 5257 7.8 - - 5801 9.3 

39 5068 7.2 5257 7.7 - - 5806 9.0 

40 5070 7.1 5258 7.7 - - 5810 8.5 

41 5074 6.9 5258 7.3 - - 5812 8.5 

42 5079 7.0 5261 7.4 - - 5811 10.5 

43 5080 6.8 5262 7.8 - - 5817 9.2 

44 5085 7.1 5267 7.8 - - 5815 8.7 

45 5086 7.1 5268 7.6 - - 5814 9.5 

46 5088 6.9 5269 7.7 - - 5821 8.5 

47 5090 6.7 5269 7.6 - - 5751 8.9 

48 5091 7.1 5270 7.6 - - 5753 9.7 

49 5092 6.9 5273 7.5 - - 5750 9.4 

50 5096 7.1 5274 7.6 - - 5749 9.1 

51 5097 7.1 5275 8.1 - - 5741 9.0 

52 5099 7.0 5276 7.6 - - 5746 9.0 

53 5100 7.2 5276 7.9 - - 5745 8.9 
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54 5101 7.0 5277 7.6 - - 5754 9.5 

55 5103 7.0 5279 7.7 - - 5753 9.3 

56 5107 7.3 5342 8.2 - - 5747 9.1 

57 5108 7.4 5343 8.0 - - 5741 8.7 

58 5108 7.1 5349 7.9 - - 5740 9.4 

59 5121 7.2 5351 7.8 - - 5742 9.1 

60 5122 7.2 5353 8.0 - - 5741 9.1 

61 5122 7.4 5354 8.2 - - 5740 9.3 

62 5123 7.2 5359 7.9 - - 5737 9.1 

63 5124 7.2 5361 7.9 - - 5738 9.1 

64 5124 7.3 5362 7.9 - - 5736 8.9 

65 - - - - - - 5732 9.1 

 

# 5875 < rpm ≤ 6125 Power 6125 < rpm ≤ 6375 Power 6375 < rpm ≤ 6625 Power 

1 5890 9.3 6126 10.5 6419 11.1 

2 5893 9.5 6128 10.3 6466 12.1 

3 5923 9.6 6129 10.5 6472 11.4 

4 5928 9.5 6130 10.3 6473 11.1 

5 5929 9.6 6136 10.5 6479 11.5 

6 5930 9.6 6140 10.1 6483 11.7 

7 5931 9.9 6144 10.1 6500 11.5 

8 5932 9.6 6151 10.0 6511 11.9 

9 5933 10.1 6153 10.5 6521 11.4 

10 5933 9.9 6156 10.4 6529 12.3 

11 5935 9.7 6210 10.5 6532 11.7 

12 5937 9.6 6210 10.2 6542 12.1 

13 5937 9.5 6211 10.5 6543 11.6 

14 5937 9.7 6212 10.5 - - 

15 5938 9.4 6215 11.5 - - 

16 5939 9.4 6216 10.8 - - 

17 5939 9.8 6218 11.3 - - 

18 5939 9.2 6218 11.5 - - 

19 5940 9.9 6218 10.4 - - 

20 5940 9.6 6219 10.9 - - 

21 5941 9.7 6219 11.5 - - 

22 5942 10.7 6219 10.5 - - 

23 5942 10.1 6222 10.3 - - 

24 6008 10.4 6223 11.0 - - 

25 6009 10.9 6225 11.1 - - 

26 6009 10.3 6225 11.0 - - 

27 6010 10.8 6226 9.2 - - 

28 6010 9.6 6226 10.7 - - 

29 6011 9.6 6227 10.9 - - 
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30 6011 9.9 6229 10.9 - - 

31 6012 9.7 6229 10.7 - - 

32 6013 10.2 6230 11.3 - - 

33 6014 10.5 6230 11.7 - - 

34 6014 10.2 6230 11.8 - - 

35 6014 9.8 6230 10.9 - - 

36 6015 10.2 6230 10.5 - - 

37 6016 9.9 6230 10.3 - - 

38 6017 9.8 6231 11.3 - - 

39 6017 10.5 6232 12.7 - - 

40 6032 10.0 6233 11.2 - - 

41 6036 9.6 6233 11.3 - - 

42 6039 10.7 6233 10.6 - - 

43 6042 9.6 6234 12.4 - - 

44 6042 11.0 6237 10.1 - - 

45 6043 10.5 6240 10.8 - - 

46 6046 10.2 6242 11.3 - - 

47 6046 9.7 6243 10.2 - - 

48 6048 9.9 6244 11.2 - - 

49 6049 10.5 6246 10.2 - - 

50 6049 10.4 6263 10.7 - - 

51 6050 9.9 6266 11.2 - - 

52 6051 10.8 6274 10.8 - - 

53 6051 9.7 6277 10.2 - - 

54 6052 10.2 6278 11.0 - - 

55 6052 10.4 6280 11.8 - - 

56 6052 10.1 6285 10.7 - - 

57 6052 10.5 6290 11.2 - - 

58 6052 10.3 6291 11.2 - - 

59 6053 10.9 6293 10.7 - - 

60 6053 10.0 6294 11.0 - - 

61 6054 10.6 6295 10.7 - - 

62 6054 10.5 6297 11.1 - - 

63 6055 10.4 6297 11.9 - - 

64 6055 11.0 6298 11.2 - - 

65 6056 10.5 6362 11.2 - - 

66 6057 10.3 6367 10.7 - - 

67 6058 10.8 6367 10.7 - - 

68 6059 10.2 6368 11.5 - - 

69 6059 10.6 - - - - 

70 6059 10.4 - - - - 

71 6060 10.4 - - - - 
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72 6062 10.5 - - - - 

73 6062 10.5 - - - - 

74 6065 10.6 - - - - 

75 6066 9.5 - - - - 

76 6070 10.8 - - - - 

77 6071 10.5 - - - - 

78 6073 9.9 - - - - 

79 6075 9.6 - - - - 

80 6080 9.8 - - - - 

81 6081 9.9 - - - - 

82 6083 10.8 - - - - 

83 6083 10.0 - - - - 

84 6084 9.8 - - - - 

85 6085 10.2 - - - - 

86 6087 10.2 - - - - 

87 6093 10.6 - - - - 

88 6096 10.2 - - - - 

89 6097 10.2 - - - - 

90 6097 10.2 - - - - 
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11.8 Appendix 8: Determination of Power Efficiency 
 

Angular 

velocity (ω) 

Power 

Efficiency (η) 

Fractional 

uncertainty (
𝚫𝛈

𝛈
) 

Absolute 

uncertainty (∆𝜼) 

/𝒓𝒂𝒅𝒔−𝟏 𝒌𝒈𝒎𝟐𝒔−𝟑 - 𝒌𝒈𝒎𝟐𝒔−𝟑 

0 0 1.090 0 

26 5.05041 1.492 7.53647 

52 5.03806 1.497 7.54115 

79 5.19595 1.501 7.79749 

105 5.41957 1.504 8.15253 

131 5.66842 1.508 8.54589 

157 5.90947 1.511 8.92700 

183 16.9106 1.582 26.7590 

209 24.9627 1.622 40.4835 

236 31.3804 1.651 51.8054 

262 39.4344 1.685 66.4387 

288 48.5075 1.722 83.5170 

314 54.8055 1.748 95.8195 

340 56.5343 1.760 99.5000 

367 56.0104 1.765 98.8327 

393 54.6171 1.766 96.4554 

419 53.4560 1.767 94.4715 

445 50.8639 1.764 89.7014 

471 49.2979 1.763 86.8983 

497 47.8633 1.761 84.2870 

524 47.4140 1.762 83.5577 

550 47.6857 1.765 84.1640 

576 48.2416 1.769 85.3168 

602 49.3993 1.774 87.6109 

628 50.3016 1.777 89.4075 

655 51.2764 1.782 91.3497 

681 52.3214 1.786 93.4234 

707 53.1726 1.789 95.1214 
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11.9 Appendix 9: Arduino Code for Modulating Motor RPM 

 

int VoltPin = A0; 

int SignalPin = 9; 

int readVal; 

float Volt; 

#include <Servo.h> 

Servo ESC; 

 

void setup() { 

ESC.attach(9,1000,2000);  

Serial.begin(9600); 

} 

void loop() { 

realVal = analogRead(VoltPin);  

realVal = map(realVal, 0, 1023, 0 180);  

ESC.write(realVal);  

} 


