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1. Introduction 

Mathematicians and engineers may use different devices to complete calculations, which range in 

purpose and automaticity. One of these devices is the slide rule, a device consisting of a set of 

logarithmically graduated sliding scales, which when used in combination can perform a range of 

calculations, such as multiplication, division, square and cube roots (and their inverses), as well as basic 

trigonometric functions, using the sliding piece and cursor in combination with different scales. This 

simple device, my own slide rule pictured in figure 1, was used to send astronauts to the moon, and has 

surprising computational power when its format is compared with the advanced calculators used today 

(Stoll, 2006).  

 

The slide rule is based on the logarithmic scale, to which John Napier is attributed its invention in 1614, 

while the first person to have used multiple logarithmic scales in combination to perform calculations 

is English mathematician Edmund Gunter (Britannica, 2019). The slide rule came into more widespread 

use in the latter half of the 19th century, after Amédée Mannheim’s introduction of the slide rule with 

today’s most common arrangement of scales (Britannica, 2019). There were few competitors for the 

slide rule among engineers as a handheld calculator until 1972, when the HP-35, the first handheld 

digital scientific calculator, was introduced; this device could perform “all the functions of the slide rule 

to ten-digit precision over a full two-hundred-decade range”, performing logarithmic and trigonometric 

functions which were previously unique to the slide rule (ETHW, 2009). Consequently, over the course 

of the 1970s and with continued developments within affordable handheld calculators, the slide rule 

diminished significantly in popularity and is almost unused today (Store Norske Leksikon, 2006). 

Considering the accomplishments made possible by use of this simple construction, I found myself 

asking the question of why the slide rule is not in use today, not by engineers nor students (Stoll, 2006). 
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To attempt to answer this question, I intend to investigate its efficiency, 

by comparing the slide rule’s operation to the scientific calculator, such 

as the Casio fx-82ES PLUS pictured in figure 2.  

Specifically, I will investigate the slide rule’s efficiency in vector 

calculations because they are used in many areas of both science and 

mathematics, such as calculating forces in mechanics. Vectors require 

several different operations when being calculated and therefore give a 

comparison of multiple operations within a single general application. As 

a result of this research, an insight into the efficiency of the slide rule and 

possibilities for adjustments can be gained.  

 

2. Operation of the slide rule  

2.1 Basic manipulation  

To be able to use the slide rule in vector calculations, a knowledge of its basic operations is necessary. 

The slide rule exists in many variants but is most often seen in versions similar to the one in figure 1. 

This slide rule uses 9 different scales, which, when used in combination, can perform a range of 

functions.  

Perhaps used most frequently and with the most ease, are the C and D scales – in combination, these 

two can perform multiplication and division. The two scales are adjacent, where the C scale is located 

on the sliding part of the scale and the D scale is static on the lower part, as seen in figure 3. 

For multiplication, the first factor of a two-factor calculation will be located on the D scale, and the C 

scale will be slid so that the index (left end of the rule, where the scale reads 1) aligns with the factor 

on the C scale (Acu-Math, n.d.). The second factor will then be located on the C scale, and the number 

on the D scale in accordance with this second factor will read the product (Acu-Math, n.d.). An example 

of this is seen in figure 3, when multiplying 4 by 2 to obtain 8 as an answer. 
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The calculations behind this operation are based on logarithms. C and D scales are identical scales 

incremented logarithmically (Pasquale, 2011). The distance from the index to any point on the scale 

can be regarded as a function of the number incremented: 𝑓(𝑥). This function can be defined as: 

𝑓(𝑥) = log(𝑥) (1) 

For example, the number 3 would be placed at 0.447 of the physical length of the scale (figure 4), as 

𝑓(3) =  𝑙𝑜𝑔(3) =  0.447 (2) 

 

Applying this concept to the C and D scales used in combination, the functions 𝑓(𝑥) and 𝑔(𝑦) indicate 

the respective distances from the index for a value of 𝑥 on the D scale or 𝑦 on the C scale: 

𝑓(𝑥) = log(𝑥) (3) 

𝑔(𝑦) = log(𝑦) (4) 
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Figure 5 shows the adjacent C and D scales, where the C scale has been displaced by a factor of a on 

scale D. Point 𝑎 on the D scale is in register with point 𝑎′ on the C scale in a similar way to points 𝑏 

and 𝑏′, but it is important to note that these are four distinct points due to the differing positions on their 

respective slides. 

From the diagram in figure 5 it is clear that: 

𝑓(𝑏) − 𝑓(𝑎) = 𝑓(𝑐) = 𝑔(𝑏′) (5) 

Hence,  

𝑓(𝑎) + 𝑔(𝑏′) = 𝑓(𝑏) (6) 

log(𝑎) + log(𝑏′) = log(𝑏) (7) 

Applying the properties of logarithms: 

log(𝑎𝑏′) = log(𝑏) (8) 

𝑎𝑏′ = 𝑏 (9) 

This corresponds to the operation done with the multiplication, where the slide was displaced by a factor 

of 𝑎, the second factor 𝑏′ was identified, and the product was given by the resulting reading on the D 

scale, 𝑏. 
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The reverse operation can be used in a similar way with division, the inverse operation of multiplication. 

In the execution of a calculation for 
𝑏

𝑏′ = 𝑎, the dividend (𝑏) will be identified on the D scale and set in 

register with the divisor ( 𝑏′) on the C scale. The quotient, 𝑎, can be identified on the D scale in register 

with the index of the C scale.  

One of the main limitations of the slide rule in even its most basic operations like multiplication, are 

the issues that arise in significant figures. The slide rule contains numbers on the scale from 1 to 9. 9̅. 

As a result, numbers must be computed in their scientific notation: for example, 129 is computed in the 

same way that 1.29 would be – similarly, 0.00045 would be calculated in the same way as 4.5.  When 

calculating vectors, this could lead to issues arising in accuracy, as this is an application of mathematics 

that often requires many steps rather than just one manipulation. Intermediate results in the calculation 

would need to be noted down manually and kept track of by the operator.  

A handheld scientific calculator, such as the Casio fx-82ES PLUS, is able to store recent memory of 

answers acquired, while there is no such counterpart in any standard slide rule, leaving this aspect to be 

subject to human error. As a result, a reason for the preferred use of the scientific calculator over the 

slide rule is provided, and gives insight into the usefulness of the slide rule as a mathematical tool. This 

is especially noticed in multiple-step calculations, such as those done in calculating vectors, and will be 

further investigated after establishing a generalization of slide rule operation. 

 

2.2 Generalizing the operation of the slide rule 

A generalization of the operation of the slide rule is necessary to be able to apply it to vector 

calculations. 

The central principle of the slide rule is the following equation, representing the difference of line 

segments as shown in figure 5 (Pasquale, 2011): 

𝑓(𝑏) − 𝑓(𝑎) = 𝑔(𝑏′) − 𝑔(𝑎′) (12) 
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To isolate 𝑏 as the solution for a given calculation: 

𝑓(𝑏) = 𝑓(𝑎) + 𝑔(𝑏′) − 𝑔(𝑎′) (13) 

𝑏 = 𝑓−1(𝑓(𝑎) + 𝑔(𝑏′) − 𝑔(𝑎′)) (14) 

This can be expressed in more general terms by defining the result 𝑏 as a function of 𝑥, 𝑦, 𝑧, such that  

𝑏 = 𝑎(𝑥, 𝑦, 𝑧),where the functions 𝑓 and 𝑔 are defined by the graduation of the respective scales 

(Pasquale, 2011). 

𝑎(𝑥, 𝑦, 𝑧) = 𝑓−1(𝑓(𝑥) + 𝑔(𝑦) − 𝑔(𝑧)) (15) 

 

With this generalization of the slide rule, its operation can be applied to calculations done in vectors. 

 



9 

 

3. Use of the standard slide rule in vector calculations 

3.1 Determining the intersection of two three-dimensional lines 

One problem commonly encountered in the calculation of vectors is determining the nature of 

intersection of three-dimensional lines. This will be attempted to be done using the slide rule and 

compared with the same calculation on a scientific calculator. 

The vector form of the equation of a three-dimensional line may be represented in the following vector 

form (Roberts, 2007): 

(𝑥, 𝑦, 𝑧) = (𝑎, 𝑏, 𝑐) + 𝑚(𝑑, 𝑒, 𝑓) (16) 

where 𝑚 is a variable constant (the parameter), (𝑎, 𝑏, 𝑐) represents the position vector and (𝑑, 𝑒, 𝑓) 

represents the directional vector (Roberts, 2007). 

Solving for the case of when these two lines are parallel is quite straightforward in the use of the slide 

rule. Three-dimensional vector lines are parallel if the directional vectors are proportional, i.e., 

multiplied by some constant 𝑘 (Roberts, 2007): 

(𝑑1, 𝑒1, 𝑓1) = 𝑘(𝑑2, 𝑒2, 𝑓2) (17) 

When using the slide rule to calculate this, proportions can easily be represented using the slide rule 

using the C and D scales. 

The C and D scales are identical, logarithmically graduated scales. They will be defined as f(x) and 

g(y), such that: 

𝑓(𝑥) = log(𝑥) (1) 

 𝑔(𝑦) = log(𝑦) (2) 

Applying equation (15) (Pasquale, 2011): 

𝑎(𝑥, 𝑦, 𝑧) = 𝑓−1(𝑓(𝑥) + 𝑔(𝑦) − 𝑔(𝑧)) (15) 

𝑎(𝑥, 𝑦, 𝑧) = 10log(𝑥)+log(𝑦)−log(𝑧) (18) 
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Applying properties of logarithms: 

𝑎(𝑥, 𝑦, 𝑧) = 10
log(

𝑥𝑦
𝑧

)
(19) 

𝑎(𝑥, 𝑦, 𝑧) =
𝑥𝑦

𝑧
(20) 

𝑎(𝑥, 𝑦, 𝑧)

𝑦
=

𝑥

𝑧
 (21) 

With this same concept, the components of each directional vector in 𝑟1 and 𝑟2 can be evaluated in a 

similar way. If the two lines are parallel, the following relationship is present: 

𝑑1

𝑑2
=

𝑒1

𝑒2
=

𝑓1
𝑓2

(22) 

Therefore, if 𝑑1 is identified on the C scale and the D scale is displaced such that it is in register with 

the 𝑑2 on D, 𝑒1 and 𝑒2 and 𝑓1 and 𝑓2 should therefore also be in register with each other, respectively, 

as the same proportional relationship is present. This case is illustrated in figure 7. If these do not 

align, it can easily be identified that the lines are not parallel. It is evident that using the slide rule in 

this instance is very efficient, and can be done with one slide, whereas each proportion would need to 

be inputted separately to the scientific calculator.

 

If lines in 3D space are not parallel, they either intersect or are skew.  There are several different ways 

to approach solving the situation of lines not being parallel, although most involve the use of matrices 

after converting to parameter form. In this process, simultaneous equations are used to determine a point 

of intersection or to clarify their skewness (Roberts, 2007) 
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Reproducing a method like this is quite difficult to do with the use of the slide rule, as the solution of 

simultaneous equations involves addition and subtraction, while the slide rule is not well suited for these 

operations without significant adjustments, such as those which will be expanded on in section 6. 

Approaches which do not involve the use of simultaneous equations include approaching it in its vector 

form: however, a similar problem would be encountered when completing the cross product of vectors 

and computing matrices – addition and subtraction is involved here and could be done much easier 

using a scientific calculator where addition and multiplication are easily accessible. This provides an 

instance in which the scientific calculator’s efficiency exceeds that of the slide rule. 

 

3.2 Converting to polar coordinate form 

Although the slide rule’s efficiency lacks in comparison to that 

of the scientific calculator in operations involving matrices and 

extensive addition and subtraction, there are other operations 

where the slide rule may be of value in the calculation of 

vectors.  

A common operation done with vectors is the conversion to 

polar coordinates, often used in the complex plane and in 

combination with Euler’s formula, for example in the solution of differential equations. Converting a 

complex number from its Cartesian form to its polar coordinate form can be represented by the 

following equation (Roberts, 2007):  

𝑥 + 𝑖𝑦 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) (27) 

where this complex number in the form 𝑥 + 𝑖𝑦 is represented by vector at a point P (𝑂𝑃⃗⃗⃗⃗  ⃗) with 

coordinates (𝑥, 𝑦) and polar coordinates (𝑟, 𝜃), where 𝑟 is the magnitude of the vector and 𝜃 is the angle 

it makes with the x-axis, as seen in figure 8. 

The length of the vector, 𝑟, is found using Pythagoras’ theorem: 
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𝑟 = √𝑥2 + 𝑦2 (28) 

This can be found by using the A scale in combination with the C or D scales, used to find squares and 

square roots. This calculation would require the addition of 𝑥2 and 𝑦2 on paper, which is not well-suited 

for the slide rule; this will be investigated further in section 5. 

Angle 𝜃 can be defined in terms of 𝑥 and 𝑦: 

tan𝜃 =
𝑦

𝑥
(29) 

𝜃 =  tan−1 (
𝑦

𝑥
) (30) 

When calculating the tangent and inverse tangent functions on a slide rule, there are two cases which 

must be considered. The D and T scales are used in combination to find the tangent of an angle, or to 

find the angle given its tangent. However, the T scale only encompasses values up to 45°, and therefore 

is operated differently for two distinct cases. 

For cases when 𝑥 ≥ 𝑦: 

𝑦

𝑥
≤ 1 (31) 

𝑡𝑎𝑛𝜃 ≤ 1 (32) 

𝜃 ≤ 45° (33) 

In this case, the angle can easily be found on the T scale, after using a combination of C and D scales. 

As in standard division, y will be divided by x by identifying y on the D scale, aligning this in register 

with x on the C scale and identifying the result on D in register with the index of the C scale, as explained 

in section 2.1. This point on D will then read the value for tan 𝜃. The angle may be identified on scale 

T in register with the previous reading on D. 

In the outstanding case, when 𝑥 < 𝑦, it follows that 𝜃 > 45° and the following identity must be used: 

cot 𝜃 = tan(90° − 𝜃) (34) 
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Here, cot 𝜃 can be found by simply reversing the division, such that the C and D scales are used to find 

the reciprocal. The same process will then be done as described in the previous case to divide x by y 

(rather than y by x), which will yield a value for cot 𝜃 on D. The value of 𝜃 will be identified on T, 

which will then be subtracted from 90 to find the final angle for the principal angle between 0 and 90°, 

according to the identity in equation (34). This angle will then need to be adjusted according to its 

location in the four quadrants of the complex plane, adding another step to this process. 

The slide rule can be used in this example of vector calculations of finding the polar form of a point in 

the complex plane. However, it has several limitations. In finding 𝑟, not all calculations can be done 

entirely on the slide rule, with some steps requiring the use of pen and paper. This is not the case for 

the scientific calculator, where every step in the calculation can be done using the device.  

The value for 𝜃 would need to be manually adjusted to correspond to the location of the point in the 

complex plane, as negative numbers may not be computed using the slide rule; only acute angles can 

result. Also, as previously discussed, when using the slide rule in multiple step-calculations, significant 

figures and numbers must be kept track of manually. This adds possibility for errors if the results 

obtained from the above calculations were to be further manipulated on the slide rule, which is not 

uncommon in the application of vectors.  

 

3.3 Calculating the dot product of two vectors 

To further compare the efficiency of the slide rule with that of the scientific calculator, the slide rule 

can be attempted to be applied to other calculations done with vectors.  

A common calculation done is taking the scalar product, or dot product, of two vectors. Vectors 𝑎 and 

𝑏 of dimension 𝑛 are defined as: 

𝑎 = [

𝑎1

𝑎2

…
𝑎𝑛

] (35) 
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𝑏 = [

𝑏1

𝑏2

…
𝑏𝑛

] (36) 

The dot product of these two can be found algebraically as follows (Roberts, 2007): 

𝑎 ∙ 𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯+ 𝑎𝑛𝑏𝑛 (37) 

This clearly involves the addition of many terms. Calculating this using a scientific calculator may be 

time-consuming but can be done easily as many terms may be added in a single calculation. However, 

there is no corresponding method for the slide rule, as the device cannot calculate many terms at once, 

and can input up to only three variables, (𝑥, 𝑦, 𝑧), for each manipulation, as seen in equation (15) 

(Pasquale, 2011): 

𝑎(𝑥, 𝑦, 𝑧) = 𝑓−1(𝑓(𝑥) + 𝑔(𝑦) − 𝑔(𝑧)) (15) 

Addition and subtraction could be performed on the slide rule by the key concept of addition of line 

segments, if the graduation of incrementation of the two scales used were directly proportional to the 

distance, such that: 

𝑓(𝑥) = 𝑥 (38) 

𝑔(𝑦) = 𝑦 (39) 

𝑎(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 − 𝑧 (40) 

However, most slide rules do not have more than one linear scale defined in this manner – the Mannheim 

slide rule, for example, has one linear scale, L, which is used in combination with the logarithmic scales 

to operate conversions to logarithms (Acu-Math, n.d.). 

As a result, proportions must be used to complete addition and subtraction, for example by using the 

following concept in the addition of 𝑥 and 𝑦 (Nikitin, n.d.): 

log(𝑥 + 𝑦) = log(𝑦 (
𝑥

𝑦
+ 1)) (41) 
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= log(𝑦) + log (
𝑥

𝑦
+ 1) (42) 

Even so, this approach would require the separate addition of 1, which adds further steps and areas for 

error. 

In this instance of calculating the dot product of vectors, the shortcomings of the slide rule are clear. 

This provides mathematical intuition about the functions of the slide rule: for calculations with multiple 

steps and many inputs, other devices such as the scientific calculator or even doing the calculations by 

hand, are more suited. The calculations are not necessarily more complex, which may suggest that the 

use of the slide rule is dependent on the magnitude of calculations, rather than the complexity, which is 

clear from other manipulations. For example, finding the angle in polar coordinates is not something 

that could be done easily mentally, but is done with ease using the slide rule. As a result, with this 

mathematical knowledge of the operation of the slide rule, developments to the slide rule can be 

investigated. 

 

4. Developments to the slide rule for more efficient use in vectors 

As previously noted, vector calculations can be done using existing scales, but include several 

calculations that cannot be done easier than the scientific calculator – for example, calculating the dot 

product algebraically or finding the length of a vector.  To research this further and evaluate the 

efficiency of the slide rule specifically with vectors, it may be of use to introduce possible new scales 

which follow the methods of the slide rule.  

An example of a combination of scales that could calculate common problems encountered with 

vectors, is finding the length of a two-dimensional vector, [
𝑥
𝑦], using Pythagoras’s theorem, in a similar 

way to what was seen in the calculation of polar coordinates. If functions 𝑓 and 𝑔, representing the 

graduation of two new scales, are defined such that: 

𝑓(𝑥) = 𝑥2 (43) 
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𝑓−1(𝑥) = √𝑥 (44) 

𝑔(𝑦) = 𝑦2 (45) 

The function of this operation would be defined as follows, according to the definition in equation (15) 

(Pasquale, 2011): 

𝑎(𝑥, 𝑦, 𝑧) = 𝑓−1(𝑓(𝑥) + 𝑔(𝑦) − 𝑔(𝑧)) (46) 

𝑎(𝑥, 𝑦, 𝑧) = √𝑥2 + 𝑦2 − 𝑧2 (47) 

In this case, variable z is not needed for the calculation due to the absence of a third variable in the 

calculation. Point z will therefore be defined as the index of 𝑓, such that 𝑓(𝑧) = 0 and therefore 𝑧 = 0 

in this case (Pasquale, 2011).  

𝑎(𝑥, 𝑦, 0) = √𝑥2 + 𝑦2 (48) 

An example of this can be seen in figure 9, where the following calculation is done by using these new 

scales, and the variables (𝑥, 𝑦, 𝑧) are defined in the manner as seen in equation (15). 

𝑎(3,4,0) = √32 + 42  = 5 (49) 

 

The first factor (𝑥 = 3) is located on the lower slide and the index of the upper scale (𝑧 = 0) is placed 

in register with this. The result (𝑎(3,4,0)) is located on the lower scale in register with the second factor 

(𝑦 = 4) on the upper scale, as seen in figure 9. 

 

Here, the calculation can be done with one slide of the slide rule by using these two new scales in one 

single slide, efficiently yielding an answer. The issue here arises in that the standard slide rule has a 
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limited set of scales at its disposal. Although these calculations could be done much easier with a 

hypothetical slide rule with the scales defined above in equations (43) and (45), the common slide rule 

does not bestow these scales and would therefore need to be constructed. 

When this adjustment has been made, however, it enables easier computation of other vector-related 

calculations. For example, calculating the dot product of vectors can be done geometrically, as opposed 

to the algebraic method outlined in section 5. For two vectors a 𝑎 and 𝑏 of dimension 𝑛: 

𝑎 = [

𝑎1

𝑎2

…
𝑎𝑛

] (34) 

𝑏 = [

𝑏1

𝑏2

…
𝑏𝑛

] (35) 

The dot product (scalar product) of these two vectors can be found geometrically, using the slide rule. 

It is defined as follows (Roberts, 2007): 

𝑎 ∙ 𝑏 = ‖𝑎‖‖𝑏‖cos 𝜃  (50) 

Where ‖𝑎‖ and ‖𝑏‖ each denote the magnitude or length of the respective vectors, and 𝜃 denotes the 

angle between the two. The magnitude of each vector can be found using the new scales previously 

explained, and from there be multiplied with each other and the cosine of 𝜃 which is easily computed 

using already existing scales, to find the dot product. 

Even within the same calculation of the dot product, this demonstrates how the efficiency of the slide 

rule varies greatly compared to the scientific calculator, depending on whether the geometric or 

algebraic approach is taken – the scientific calculator is of far easier use when using the algebraic 

approach and calculating the sum of many terms, while its efficiency does not far exceed that of the 

slide rule when using the geometric approach. 

This indicates that the slide rule is not suited from calculations with many terms, or of bigger 

computational magnitude. While the scientific calculator is better suited for inputting multiple numbers 
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in a clear way, this overview is not available using the slide rule, where it is evident that only three 

inputs can be used at a time. Therefore, when approaching this same vector calculation of dot products 

from a different angle which uses more direct steps and fewer terms, the slide rule is indeed more 

efficient, and could be more efficient than its modern counterpart, the scientific calculator. However, 

this was only possible after adjustments were made to the scales available on the slide rule, but 

nonetheless demonstrate the central principles of slide rule operation and its efficiency. 

 

5. Conclusion 

The slide rule is an example of the way in which different calculators uses different mathematical 

approaches to compute the same calculations. In comparison with the scientific calculator, there are 

differences in not only the efficiency of the computation but in the foundational manner in which the 

computations are approached. There are some calculations in which the slide rule may be more efficient, 

such as in the operation of certain calculations relating to vectors, like identifying parallel lines. 

However, the main flaw of the slide rule appears to be that its nature and efficiency can be generalized 

to certain types of operations, such as proportions, but not to broader areas of mathematics, such as 

vectors.  

Furthermore, many types of calculations beyond standard multiplication and division require the 

construction of new scales on the slide rule, if to be done efficiently, as seen in calculating the magnitude 

of a vector. This inconsistency may provide a reason for its lack of use today, when compared with the 

scientific calculator which is more generally efficient in a range of situations and uses. Even within the 

single topic of vectors in mathematics, a knowledge of its operation in different calculations and an 

understanding of its nature in applying it to solve its problems in new ways, is required. This may be 

because the input to a scientific calculator matches very well to the written calculation, while inputting 

these calculations to the slide rule holds a vastly different format and therefore requires a thorough 

knowledge of the device’s operation. 
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Nonetheless, this application of the slide rule in vector calculations provides an insight into how 

mathematics, such as the laws of logarithms, can be used to solve calculations from a different approach. 

Perhaps the slide rule is useful not for its universal efficiency or accessibility as a general mathematical 

tool in, for example, vector calculations, but for its value as a way of understanding mathematics from 

a different angle than the vastly different scientific calculator.  
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