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Abstract 
In recent years origami has gained significant interest among engineers applying the ancient art 

of paper folding to aerospace, robotics, biomedical devices, and more. As the number of 

applications has increased and areas widened, the need for a thorough understanding of the 

mathematics of origami has become crucial for developing new applications. One application that 

documents the mathematical properties of origami well is the Circle-River method, an origami 

designing algorithm known to be the most successful. This and other algorithms are 

mathematically complex and not easily accessible without an extensive mathematical 

background. To combat this accessibility issue and out of personal curiosity I decided to develop 

a new origami designing algorithm, the Angle-Ray method, which uses trigonometry and a circle 

property to develop new origami structures according to user specifications. This report will 

present the experimental approach behind the development of the Angle-Ray method. 

Glossary 
In this report, some origami-specific terminology will be used. Whenever uncertain, please use 

the glossary below explaining the terms.  

Closed-ended flaps – flaps that share both nodes with at least another flap.  

Closed-ended flap section – a section of closed-ended flaps separating two collections of open-

ended flaps. 

Closed-ended point – a node where the open-ended flap and the closed-ended flap intersect. 

Connectivity – a measure of how well two flaps are connected. The greater the connectivity the 

lower the mobility between the flaps and the less surface area between them, and vice versa.  

Crease line – representation of each fold in a crease pattern and is a simple straight line. 

Crease pattern – the pattern made of crease lines that emerge when unfolding an origami 

structure and the pattern can be used to fold the origami structure. 

Efficiency – how much of the paper is being used in comparison to the total. The more paper 

within the crease pattern the less is wasted and the more efficient it becomes.  
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Flap – a part of a paper that is partially disconnected from the rest with a degree of free 

movement. More theoretically a flap is a mountain fold with valley folds on both sides.  

Mountain fold – a fold that folds outwards in a crest and is represented with a blue crease line on 

crease patterns (Figure 1). 

 

Figure 1. Mountain fold 

Open-ended flaps – flaps that are connected to another flap only on one end. 

Open-ended point – the outer edge of an open-ended flap. 

Origami base – the simplest structure used to create a desired final product with the required 

number of flaps and connectivities. 

Shaping – the process of adding details to an origami base to make it resemble the desired 

structure.  

Shaping folds – types of folds used in the shaping process to add details.  

Tree diagram – a diagram simplifying the final desired structure into its essential required flaps 

both closed-ended and open-ended. In the case of humans, it would be a common stick figure 

(Figure 2).  
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Figure 2. A tree diagram of a human 

Total flap length – the length from an open-ended point to the center point of the crease pattern.  

Valley fold – a fold which folds inwards and is represented by a red crease line on crease patterns 

(Figure 3). 

 

Figure 3. Valley fold 
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Introduction  

Origami (折り紙), the Japanese art of folding (折り) paper (紙) has a history spanning at least six 

centuries (Robinson, N/A). It is an art form where you fold structures from uncut paper either as 

decorative elements or depicting various shapes such as birds, and people. In more recent years 

origami designing has seen major leaps after mathematicians found interest in the art, 

discovering mathematical properties that aid artists when making new designs. One of the 

greatest leaps is the use of mathematics to design desired origami bases. An origami base is a 

simple structure with the number of desired flaps, types, lengths, and connectivities, that can be 

shaped out to the structure by folding in details. Therefore, many traditional and modern origami 

designs start with an origami base. However, developing the desired origami base is a tedious 

non-artistic process of trial and error, especially if you are inexperienced. To aid this process of 

developing an origami base, mathematicians have made several algorithms. The most successful 

of them is the circle-river method (Lang, 2009) accomplished through complex mathematics 

requiring a high degree of mathematical knowledge. This complexity restricts the method's 

accessibility, and I felt a desire to develop a method using simpler mathematical concepts that 

would be familiar to a 16-year-old in the Middle Year Program (MYP) taught by the International 

Baccalaureate (IB). This would give a wider audience the ability to design their own origami. 

Additionally, I gained a renewed interest in origami when discovering origami applications in real 

life. I was fascinated when I discovered origami’s application to the design of the James Webb 

Space Telescope to fold and unfold the primary mirror (NASA, 2022) and its applications in 

robotics and medical devices (Muller, 2019). Researching origami’s potential applications is still 

ongoing as origami's ability to reshape three-dimensional structures and transfer mechanical 

energy is highly valuable within the field of engineering.  

Origami basics 
When developing a new origami design there are three distinct processes. Firstly, the artist starts 

by drawing a simple tree diagram noting desired lengths and connectivities. Secondly, the artist 

uses this information at the first step (number of flaps, lengths, types, positions, and 

connectivities) to generate an origami base with these requirements. Thirdly the artist adds 

details using shaping folds to make the origami base resemble the desired structure. In brief, the 
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first step is planning, the second step is making an origami base, and the third step is shaping. My 

project is focused on developing a new algorithm to design origami bases based on user 

specifications, as the process of making an origami base is tedious, non-artistic, and challenging 

compared to the other two steps.  

Approach to the Problem 
The process behind the development of my algorithm can be reduced to a repetitive cycle of 

observations, hypothesis, experimentation, analysis, and conclusion.  At any time, I made 

observations through sketching, folding, mind simulations, and computer programs, seeking 

relationships and features that could be manipulated. Based on these observations I developed 

hypotheses, at times small and at times an entire method, which were experimentally tested. The 

data from the tests came as folded shapes and were analyzed and compared to expectations.  

Therefore, most of the data will be presented as pictures in the appendices, but its meaning will 

be summarized.  

When approaching a huge problem such as developing a new fully functional origami-designing 

algorithm there is a need to subdivide the problem into smaller more comprehendible parts, as 

seen below. Further, the problem was not just subdivided but allocated different degrees of 

importance (level 1 being the most important), which influenced the order I approached the 

problem.  

Level 1 

• Must allow input and output of open-ended flaps. 

• Must allow input and output of several flaps. 

• Must allow input and output of the length of flaps. 

Level 2 

• Must allow input and output of closed-ended flaps. 

• Must allow input and output of any number of flaps. 

• Must allow input and output of connectivity. 

Level 3 

• Must allow any paper shape.  
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• Must have an optimization capacity. 

• Potentially a computer program accepting variable input and giving the crease pattern as 

an output. 

Development process 
Developing a new origami designing algorithm was a long endeavor starting as part of personal 

project at the IB’s Middle Year Program in the summer of 2022 (Sydnes, 2022), but the research 

was not continuous. The development process is subdivided into four stages as each stage of 

development has a fundamentally different goal and approach, where each stage has its own 

product.  

As a note whenever a crease pattern is drawn, folded, and measured there will be minor errors 

due to measurement tools and folding inaccuracy which are inevitable. The ruler used can only 

measure to the nearest mm and the protractor used can only measure to the closest whole 

degree.  

The first stage  
The start of my endeavor was the personal project, a research project done at the end of the MYP. 

As part of my personal project, I had set a goal to develop an origami designing algorithm that 

could be understood by 16-year-old MYP students (Sydnes, 2022). Hence, I restricted myself to 

mathematical concepts taught in MYP and I made a booklet with concise instructions on how to 

apply the method. This initial restriction was also followed for the final method of this report.  

When approaching the problem of developing a new origami designing algorithm at this stage I 

decided to simplify and focus only on the most important elements of origami (level 1), which 

means that this stage only investigated open-ended flaps.  

Initial observation 

Before I started to develop an algorithm, I had to find patterns and features of origami that could 

be manipulated. Hence, I folded and unfolded several traditional origami structures observing 

their crease patterns (Appendix 1). My observations can be summarized in the three points below. 

1. Most of the time valley folds and mountain folds alternated.  
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a. This is called Maekawa’s theorem and was discovered by Maekawa to be the 

criteria for flat foldability, the ability of one origami crease pattern to be folded flat 

(Wikipedia, 2022). 

b. This observation also allowed me to understand the minimum theoretical criteria 

of a flap, to be a mountain fold with two neighboring valley folds.  

2. Conditions for axes of symmetry for n number of flaps. 

If 
𝑛

4
= ℤ there are two diagonal and two perpendicular axes of symmetry intersecting at 

the center of the paper.  

If 
𝑛

2
= ℤ  and 

𝑛

4
≠ ℤ  there are two perpendicular axes of symmetry intersecting at the 

center of the paper. 

3. All shapes within the crease patterns were right-angle triangles. 

a. I later found the statement to be false however this was a crucial misunderstanding, 

which simplified the problem of designing origami bases.  

Experiment 1 

Based on my observations I saw that all traditional structures were built on right angle triangles 

inspiring me to investigate how I could use trigonometry.  

Hypothesis: Trigonometry can be used to outline the edges of a new origami structure.  

This approach was never properly developed, but to test it I developed a rough method using the 

concept.  

Method: Using trigonometry one could find the angle necessary to create a line of desired side 

length which could outline the crease pattern as a polygon. The crease pattern could then be 

found by drawing lines from the center of the paper to the edges of the polygon. Each side length 

would then be a measure of connectivity and the number of flaps could be adjusted through the 

choice of polygon.  

Data: Images from the tests and calculations can be found in Appendix 2 (tests for five flaps and 

six flaps with various length inputs).  
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Results and Analysis: Due to the varied results (Appendix 2) from this method it is difficult to make 

a clear judgment on the hypothesis, however, I leaned towards rejecting the idea. It was observed 

that some errors were caused due to rounding, which exacerbates as the number of flaps increase 

due to the recursive nature of the method. Additionally, there were challenges getting the ending 

point and starting point to overlap which requires very specific inputs. This could have been 

overcome using the internal angles of the polygons to adjust.  

Conclusion: I decided not to continue the pursuit of this method. Firstly, it required too many 

calculations and immensely precise measurements. Secondly, due to its recursive nature which 

added rounding errors. Thirdly, there was no clear path toward the application of the method for 

more complex structures. 

Experiment 2 

Following Experiment 1’s negative results I went back to my observations looking for any patterns 

I could manipulate.  

Hypothesis: Observed patterns can be used to create rules that can be followed to simplify the 

process of making an origami base.  

Algorithm developed:  

1. Decide the number of flaps desired (n) 

2. The following steps will vary depending on the number of desired flaps (n) 

a. If 
𝑛

4
= ℤ there are 4 axes of symmetry. Two horizontal and two perpendicular axes 

intersect at the center of the paper.  

b. If 
𝑛

2
= ℤ and 

𝑛

4
≠ ℤ there are two perpendicular axes of symmetry intersecting at 

the center of the paper.  

c. If 
𝑛

2
≠ ℤ subtract n by 1 and run it through step 2. The flap subtracted will be added 

between two flaps later.  

3. Plot the mountain folds so that they follow the axes of symmetry. For an odd number of 

flaps add the last one between any two mountain folds. Then draw valley folds cutting the 

angle between the mountain folds in two to make them a flap.  
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Data: The images of the crease patterns and bases produced can be found in Appendix 3. In the 

test, both even and odd values were tested for all values between 4 and 17 flaps.   

Result and Analysis: The algorithm simplified the process of designing new origami bases 

supporting the hypothesis. However, the algorithm only allows for the user to input desired 

number of flaps, hence very limited in the user's freedom and control. 

Conclusion: The algorithm can create a crease pattern with the desired number of flaps 

supporting the hypothesis. However, a user can only alter the number of flaps. Hence the 

algorithm is minimal and acts more as a summary of the initial observations that can be built 

upon in the future.   

Experiment 3 

Instead of following through Experiment 2’s algorithm which had little capacity to be altered, I 

returned to the idea of using trigonometry. But instead of using trigonometry to find the outer 

edges I tried a new approach.  

Hypothesis: Trigonometry can be used to get flaps of desired length from the center of the paper 

when compared to a perpendicular line.  

Method: Using a perpendicular line from the edge to the center of the paper users can use 

Equation 1 to find the angle between the desired flap and the perpendicular line required for the 

desired flap length. Using these angles one can draw the crease pattern using a protractor. These 

lines would then become mountain folds and in between every mountain fold one must draw a 

valley fold bisecting the angle.  Other than the angles the flaps can be placed anywhere meaning 

that for any length there are either eight options or four.  

𝑐𝑜𝑠−1 (
𝑙

2𝑑
) = 𝛳 

d = desired flap length, l = side length of the paper.  

Equation 1. First equation 
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Equation 1 explained: The length of the perpendicular line going to the center of the paper will 

be half of the paper's side length when the paper is a perfect square. The rest is ordinary 

trigonometry, a concept taught within the MYP following my criteria.   

Data: Images from the testing process can be found in Appendix 4.  

Result and Analysis: The tests came out positive where the expected number of flaps was 

generated, the crease pattern was foldable, and came with the desired flap lengths with a 1:1 

ratio meeting the requirement for level 1. The method was effective and easy to use and became 

part of the final algorithm at this stage. When testing there were problems in cases where the 

crease lines and the edge of the paper created a non-triangular polygon (Figure 4a) as this shape 

was not foldable without creating an undesired flap. This was resolved by adding a mountain fold 

between the open-ended points allowing the excess part to be folded away creating a triangle 

(Figure 4b). This observation and solution were also applied in stages three and four. 

 

Figure 4a. Non-triangular polygon within crease pattern  Figure 4b. Figure 4a resolved with an additional mountain fold 

Conclusion: The method was successful and easy to apply. Certain minor errors can be expected 

due to measurement errors and rounding errors for the angles, but it is more than effective for 

its intended purpose as a simple tool to design origami bases. However, the experiment and 

theory show that there are limitations to the method. Listed below, the most significant is the 

limitation on the number of flaps with the same length and the limitation on the maximum and 

minimum flap length.  

• The method does not work if the paper is not a square. 

• The method does not work when the length of a flap is less than half of the length of 

the side. 
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• The method does not work when the length of a flap is greater than 

√2 ∗ ℎ𝑎𝑙𝑓 𝑜𝑓 𝑠𝑖𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ2. 

• The method does not work when the number of flaps with equal lengths exceeds 8. 

• The method does not work when the number of flaps with the maximum length 

exceeds 4. 

• The method does not work when the number of flaps with the minimum length 

exceeds 4. 

• The method cannot create closed-ended flaps. 

• All crease lines must merge at the center of the square paper. 

Product of the initial stage 

Based mainly on Experiments 2 and 3 I developed a final algorithm for this stage. This was made 

into a booklet as a product of my MYP personal project found in Appendix 5. 

Testing the booklet 

To ensure the booklet was functional I tested the guide by starting with an intended structure and 

evaluating the product's resemblance.  

Hypothesis: The booklet sufficiently guides an individual in creating an origami design of a desired 

structure. 

Method: I tested the booklet by starting with the intended designs of flower, bird, fish, airplane, 

lion-face, elephant-face, clamshell (Tridacna), and octopus, and evaluated the outcome. 

Data: The data can be found in Appendix 6 where the intended structure is in captions below the 

image with a personal note of success or failure.  

Result and analysis: Most of the origami structures resemble the intended structure. However, 

some fail due to the limitations of the method. The giraffe failed due to the minimum length and 

maximum length restrictions, the shrimp failed due to a lack of control over connectivity, and the 

octopus failed due to difficulty implementing closed-ended flaps.  
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Conclusion: The method is highly effective for relatively simple designs such as lion-face and birds 

and meets the requirement for level 1. However, it is difficult to use for structures requiring large 

length ratios, a high number of flaps, and closed-ended flaps which are a level 2 requirements.   

Second stage 
After completing the initial stage, I left the project for a while but regained interest in improving 

the method as I came up with an idea that could potentially allow closed-ended flaps. The idea 

was to draw circles where the radius would equal the desired flap length and find the intersection 

between the circles which would become the nodes of the crease pattern. However, the approach 

produced crease patterns that were difficult to understand and challenging to fold. The structure 

was difficult as there were no effective ways to ensure the geometry within the crease patterns 

were triangular. Therefore, I decided to give up on this approach after two months of intensive 

experimentation. In Appendix 7 you can find some of the experimental sketches made.  

Third stage 
When developing the method of the second stage I discovered an interesting crease pattern 

(Figure 5). The crease pattern when folded created two distinct and simple open-ended flaps 

attached to a single closed-ended flap with three sets of potential variables a, b, and c (Figure 5). 

Where a influences the length of the closed-ended flap, b influences the length of the open-

ended flap, and c influences the connectivity. At an early stage, I confirmed that the input a, b, 

and c lengths were the same as the output lengths when folded. 
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What makes this crease pattern special is how it creates closed-ended flaps. It creates equally as 

many closed-ended flaps as open-ended flaps but folds them together into one at the folding 

stage. This allowed the crease pattern to accommodate closed-ended flaps without drastically 

increasing the complexity, achieving parts of level 2 requirements. However, this approach 

reduces efficiency as it produces duplicates of the same flap. When weighing the pros and cons 

it is evidently worth pursuing as the approach is simple and integrates closed-ended flaps and 

connectivity.   

Based on the traits of the crease pattern I developed the start of the new method. When creating 

a new origami design, you often start by creating a tree diagram of the desired structure (Figure 

6, left).  Considering the folding approach produces closed-ended flaps by folding together 

duplicates there is a need to alter the tree diagram. The idea is that one can combine the open-

ended flap length and the closed-ended flap length and represent the total flap length as an open-

ended flap. The total length will be found by pinpointing a center point in the crease from where 

you build the altered tree diagram (Figure 6, right). 

 

Figure 5. Core crease pattern of the Angle-Ray method 
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When looking at this newly altered tree diagram (Figure 6, right) I saw strong similarities to the 

crease pattern produced by the method developed at stage 1. Hence, I decided to opt for a similar 

approach finding the angle between crease lines using trigonometry and the total flap length. In 

contrast to the method of stage 1, I used the cosine rule which removed the length and number 

limitation of the flaps, as it removed reliance on a perpendicular reference line and the need for 

the crease lines to intersect the edge of the paper as it could be folded away. Therefore, the 

following equation was developed. 

𝜃 = 𝐶𝑜𝑠−1 (
𝑓𝑡1

2 + 𝑓𝑡2
2 − 𝑙2

2𝑓𝑡1𝑓𝑡2
) 

𝑓𝑡1, 𝑓𝑡2 ≠ 0 

ft1 and ft2 is the total flap length drawn as a straight crease line form the center point. 

𝑙 is the distance between the open-ended points, to an extent a measure of connectivity. 

Equation 2. Initial cosine rule based equation 

Figure 6. Left: original tree diagram. Right: altered tree diagram 
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However, Equation 2 had a major problem. Connectivity is a measure that should be ratio-based. 

This means that if the length ratios between ft1 and ft2 are constant and the angle is constant then 

the connectivity should be equal, but the current approach of representing connectivity through 

the distance between the open-ended points is not constant. Therefore, I defined connectivity 

below (Equation 3).  

𝑐 =  
𝑓𝑜1 + 𝑓𝑜2

𝑙
 

𝑙 ≠ 0 

𝑐 is the connectivity value between the two open-ended flaps. 

𝑓𝑜1, 𝑓𝑜2 is the length of the two neighboring open-ended flaps. 

Equation 3. Definition of connectivity 

The definition of connectivity can then be rewritten to find 𝑙 (Equation 4). 

𝑙 =  
𝑓𝑜1 + 𝑓𝑜2

𝑐
 

𝑐 ≠ 0 

Equation 4. 𝑙 in terms of open-ended flaps and connectivity 
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From Equation 4 one can understand that when applied to the core crease pattern (Figure 7) the 

𝑐 ≤ 1 have a 360-degree mobility around the node, on the other hand when 𝑐 > 1 flaps have a 

decreased mobility. In addition, the lower the value for c is the more surface area there is 

between the two open-ended flaps, which can be manipulated when shaping.  

Based on Equation 4 one can rewrite Equation 2. This is the main equation used in the final 

algorithm, the Angle-Ray method (Equation 5).  

𝜃 = 𝐶𝑜𝑠−1 (
𝑓𝑡1

2𝑐2 + 𝑓𝑡2
2𝑐2 − 𝑓𝑜1

2 − 𝑓𝑜2
2 − 2𝑓𝑜1𝑓𝑜2

2𝑓𝑡1𝑓𝑡2𝑐2
) 

𝑓𝑡1, 𝑓𝑡2, 𝑐 ≠ 0 

Equation 5. The main equation of the Angle-Ray method 

Equation 5 was tested to evaluate its useability and two challenges were observed. Firstly, the 

connectivity variable is difficult to use due to its definition being inversely proportional to the 

length between the open-ended points. Secondly the equation is large and takes time to input on 

Figure 7. Variables in context of the core crease pattern (Figure 5) 
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a calculator, but this was overcome by developing a simple code to execute Equation 5 by 

inputting variable values (Appendix 8). 

Product of the third stage: 

The algorithm that was produced at the third stage is what became the core of the Angle-Ray 

method.  

1. Sketch a tree diagram of the desired structure and decide on all the desired flap lengths 

and connectivity values (Figure 8).  

 

Figure 8. Tree diagram for a 5 flap origami base 

2. Then alter the tree diagram to only have one intersection being the center point. This is 

by deciding a center point from where you would add the length of the closed-ended flap 

and open-ended flap to gain the total flap length which is drawn as a straight line (Figure 

9). 
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Figure 9. Altered tree diagram of the 5 flap origami base 

3. Using the total flap lengths, desired connectivity values, and open-ended flap lengths, to 

find the angle between the crease lines using Equation 5. 

𝜃 = 𝐶𝑜𝑠−1 (
𝑓𝑡1

2𝑐2 + 𝑓𝑡2
2𝑐2 − 𝑓𝑜1

2 − 𝑓𝑜1
2 − 2𝑓𝑜1𝑓𝑜2

2𝑓𝑡1𝑓𝑡2𝑐2
) 

4. Draw the main mountain folds with their appropriate total length and the angle found at 

Step 3. The mountain folds are what become the flaps.  

a. If ∑ 𝜃 > 360, then the values inputted are impossible to fold.  

b. If ∑ 𝜃 < 360, draw an additional mountain fold with the same length as the first 

mountain fold drawn, and draw a valley fold between the additional mountain fold 

and the first mountain fold. In the folding process, the additional flap will be folded 

together with the first flap removing the excess angle (Figure 10). 

c. If ∑ 𝜃 = 360, it is of the most optimal design for this method. 
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Figure 10. After completion of Step 4 for a 5 flap origami base with a sum theta less than 360 

5. Following Step 4 draw additional valley folds between closed-ended points and 

neighboring open-ended points, and additional valley folds from the center point to the 

intersection of the two valleys. But not for closed-ended flap sections which will instead 

have a valley fold bisecting the angle. Also, draw mountain folds between the open-ended 

points and the rest of the crease lines will naturally follow when folding the flaps together 

(Figure 11).   

  

Figure 11, after completion of Step 5 for a 5 flap origami base with two closed-ended flap sections 
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The method was highly successful at creating closed-ended flaps and open-ended flaps of desired 

lengths and connectivities, however testing this method was a challenge even with the calculator 

that ran Equation 5 (Appendix 8) as values had to be input through trial and error for it to be 

foldable. Additionally, there were challenges drawing the crease pattern precisely with ordinary 

rulers and protractors. Therefore, for stage four, I decided to develop a computer program that 

could draw the crease patterns and automatically adjust input for foldability.  

Fourth stage 

Following the problems of the third stage, I wrote a computer program that could model the 

crease patterns and make necessary calculations based on user inputs. A detailed explanation of 

the final computer program is found under Final computer program explanation. Here I will 

present the two biggest problems that arose when coding.    

The first problem was difficulty getting a foldable crease pattern commented on in the third stage. 

A crease pattern output is not foldable when mountain folds cross one another (Figures 12). This 

occurs when ∑ 𝜃 > 360 or ∑ 𝜃 < 180. 

 

  

Figure 12a. ∑ 𝜃 > 360 Figure 12b. ∑ 𝜃 < 180 
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To solve this issue, I developed Equation 6 where 𝜃 is the angles found when using Equation 5.  

𝜑 = 𝜃 ∗
360

∑ 𝜃
 

𝜃 is the angles found using Equation 5. 

𝜑 is the new recalibrated angle. 

Equation 6. Equation for angle recalibration 

It uses the property of a circle having 360 degrees to find the rate of recalibration required for 

every angle to get ∑ 𝜃 = 360. This recalibration makes non-foldable designs (Figure 13a) foldable 

(Figure 13b) and optimizes any designs that folded away portions of the paper increasing crease 

pattern efficiency. However, this recalibration alters the connectivity between flaps. When 𝜃 

increases, the connectivity between flaps would decrease and vice versa. Generally, when 

designing origami, a decrease in connectivity is not a problem as the connectivity can be increased 

later through shaping folds. On the other hand, an increase in connectivity is problematic as there 

are no shaping folds that I am aware of that can decrease connectivity. But the connectivity is 

only increased when initial inputs give a crease pattern which has a ∑ 𝜃 > 360, not foldable and 

any increase in connectivity is better than an un-foldable design.   

  

Figure 13a. Before optimization/fixing   Figure 13b. After optimization/fixing 
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The second problem I encountered was a missing mountain fold between the flaps, this is 

required to allow the flaps to fold together. Hence, I investigated all angles produced by the crease 

lines (Figure 14) which showed equality between the angles represented by the same letter in 

Figure 15. Based on this observation I hypothesized that the relationship in Figure 15 was true. 

To test this hypothesis, I first measured the other crease patterns I had folded and got a result 

aligning with the hypothesis. Following I edited the code and gained crease pattern outputs 

containing these crease lines (Appendix 9). When folding the crease patterns all of them were 

successful at being folded together with neighboring flaps supporting the hypothesis.  Same 

results were also achieved in the Final experiment (Appendix 15). 

 

This is where my development process ends, therefore the final algorithm of this stage is also the 

final algorithm of the entire project. The written algorithm can be found under Angle-Ray method, 

and the computer program can be found in Appendix 10 which is accompanied by a user guide 

(Appendix 11) and an explanation of the code (Appendix 12). 

Angle-Ray method 
1. Sketch a tree diagram and decide on the lengths of all flaps and the connectivity between 

the flaps (Figure 8).  

Figure 14. Investigating crease pattern angles Figure 15. Equality of angles on crease patterns 
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2. Pick a point on the tree to be the center point from where you alter the initial tree 

diagrams to have straight lines that only intersect at the center. Then get the total lengths 

from the center point to each open-ended point which becomes the total flap length 

(Figure 9).  

3. Then input all the values into the equation below (Equation 5). 

𝜃 = 𝐶𝑜𝑠−1 (
𝑓𝑡1

2𝑐2 + 𝑓𝑡2
2𝑐2 − 𝑓𝑜1

2 − 𝑓𝑜1
2 − 2𝑓𝑜1𝑓𝑜2

2𝑓𝑡1𝑓𝑡2𝑐2
) 

𝑓𝑡1, 𝑓𝑡2, 𝑐 ≠ 0 

𝑓𝑜 ≤ 𝑓𝑡 

𝜃 is the angle between ft1 and ft2. 

ft1 and ft2 are the total flap lengths of two neighboring flaps. 

𝑓𝑜1 𝑎𝑛𝑑 𝑓𝑜2 are the open-ended flap lengths at the end of ft1 and ft2. 

𝑐 is the connectivity between 𝑓𝑜1 𝑎𝑛𝑑 𝑓𝑜2. 

a) If 𝑐 < 1 there is no change in mobility, however, there is a change in the 

surface area which can be used during the shaping process. 

b) If 𝑐 > 1 there will be an increase in connectivity as c increases. 

c) When dealing with closed-ended flap sections 𝑓𝑡 = 𝑓𝑜.  

4. If ∑ 𝜃 ≠ 360, run every 𝜃 value through the following equation (Equation 6), if not skip 

this step. 

𝜑 = 𝜃 ∗
360

∑ 𝜃
 

∑ 𝜃 ≠ 0 

𝜃 are the angles found using Equation 5. 

𝜑 are the new recalibrated angles. 

5. Draw mountain folds from a pre-decided center point with the total flap lengths and the 

angle found in Steps 3 or 4 between them. 

6. Draw mountain folds connecting the neighboring open-ended points.  

7. Mark out the closed-ended points and draw a valley fold between the closed-ended 

points and the open-ended points of neighboring flaps.   
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8. Then draw a valley fold from the center to the intersection of the valley folds drawn in 

Step 7. 

9. Lastly draw a mountain fold from the intersection between the valleys drawn in Step 7 

and the mountain fold drawn in Step 6 following Figure 15’s equality of angles.  

Reason for the name Angle-Ray method 
The name Angle-Ray method is heavily inspired by the Circle-River method (Lang, 2009) which 

has a name that is highly descriptive of the method’s approach to origami designing. Hence, I 

named my method the Angle-Ray method as the approach is to find the angle between lines 

that spread out from a central point. 

Final experiment 
Now that my final product (Appendix 10) was complete it was time to test the algorithm and 

computer program in its entirety. Testing took place in three parts. Firstly, with values I had 

selected, and secondly with randomly generated values within a fixed range. For both cases, the 

crease patterns were folded. The third test was done with random values, but the crease patterns 

were not folded and was done to investigate the source of error observed in the second test.  

First test 
In this experiment, I inputted values for logically reasonable origami bases. This means that the 

value inputs were mainly integers and connectivity values had little variation (Appendix 14). 

Additionally, closed-ended flap sections were strategically placed to allow ease when shaping. 

This was done both after and while writing the code therefore some crease patterns may be 

lacking certain crease lines. However, this does not affect the testing of the algorithm itself as it 

is independent of the drawing system. This test resulted in all output crease patterns being 

foldable, however, some were very difficult to fold and questionable on how easily they could be 

used as an origami base.  

Second test 
In this experiment, random values were inputted into the computer program using the code in 

Appendix 15 and the crease patterns (Appendix 16) were folded. Random values were used to 

avoid human biases when selecting variable values. I generated 10 random crease patterns with 
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the value constraints stated below. Closed-ended flap sections were intended to be included in 

the randomization, but due to complications with the code was given up.  

3 ≤ 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑎𝑝𝑠 < 10, 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑎𝑝𝑠 ∈ ℤ+ 

1 ≤ 𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑎𝑝 𝑙𝑒𝑛𝑔𝑡ℎ < 10, 𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑎𝑝 𝑙𝑒𝑛𝑔𝑡ℎ ∈ ℝ+ 

1 ≤ 𝑜𝑝𝑒𝑛 𝑒𝑛𝑑𝑒𝑑 𝑓𝑙𝑎𝑝 𝑙𝑒𝑛𝑔𝑡ℎ < 𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑎𝑝 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑜𝑝𝑒𝑛 𝑒𝑛𝑑𝑒𝑑 𝑓𝑙𝑎𝑝 𝑙𝑒𝑛𝑔𝑡ℎ ∈ ℝ+ 

0 ≤ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 < 1, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∈ ℝ+ 

From the crease patterns only Appendix 16.1, 16.6, 16.8, 16.10 was foldable. The other had one 

of two kinds of problems. The first kind is a case where you can connect the two neighboring 

open-ended points with a straight line (Figure 16, green line) without intersecting the flap in 

between (Figure 16, yellow circle). These structures are very difficult to fold and are not intended 

to be compatible with this method and computer program.  

 

Figure 16. Problem with outputted crease pattern due to flap lengths 
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The second kind is a problem where the computer program draws two mountain folds without 

drawing a valley fold in between (Figure 17). When looking into the values used (Appendix 15) 

the problem is evident. The values generated had open-ended flap lengths which were too close 

to the total flap length resulting in an overlap of lines when the computer drew the crease pattern. 

Theoretically, if the crease pattern were printed on a larger paper with higher resolution the 

problem would be solved, but realistically speaking this kind of input provides no value.  

 

Figure 17. Problem with outputted crease pattern due to mountain folds without valley folds in between 

The first problem occurs due to a lack of value limitation. Further investigation into this problem 

would allow for an effective way to warn users when such values are inputted. However, this will 

be implemented in a future update. The second problem is a problem due to the drawing program, 

which occurred because of the extreme similarities in values being inputted by randomization but 

are unrealistic inputs when considering practical applications. This was also the reason why I 

opted to test with random values as they would allow the discovery of unforeseen problems. 
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Additionally, when testing I observed several error outputs hinting at a need to find the error 

conditions done in the third test.  

Third test 
For the final test, I generated 500 sets of random variable inputs using the code in Appendix 15 

and got the computer to record the types of errors given by the computer program and which 

lines gave the error. The value constraints were the same as for the second test except for an 

additional constraint limiting the number of decimal places to two. 

3 ≤ 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑎𝑝𝑠 < 10, 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑎𝑝𝑠 ∈ ℤ+ 

1 ≤ 𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑎𝑝 𝑙𝑒𝑛𝑔𝑡ℎ < 10, 𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑎𝑝 𝑙𝑒𝑛𝑔𝑡ℎ ∈ ℝ+ 

1 ≤ 𝑜𝑝𝑒𝑛 𝑒𝑛𝑑𝑒𝑑 𝑓𝑙𝑎𝑝 𝑙𝑒𝑛𝑔𝑡ℎ < 𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑎𝑝 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑜𝑝𝑒𝑛 𝑒𝑛𝑑𝑒𝑑 𝑓𝑙𝑎𝑝 𝑙𝑒𝑛𝑔𝑡ℎ ∈ ℝ+ 

0 ≤ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 < 1, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∈ ℝ+ 

𝐴𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤𝑒𝑟𝑒 𝑙𝑖𝑚𝑖𝑡𝑒𝑑 𝑡𝑜 𝑡𝑤𝑜 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑙𝑎𝑐𝑒𝑠 

I decided to conduct this experiment as I observed several unexpected errors in the second test 

and suspected the source of the errors to be the code drawing the crease pattern rather than the 

algorithm itself. Hence, I hypothesized that the lines causing errors in the computer program were 

one of the lines modeling the crease pattern. The data can be found in Appendix 17.  

Analysis and Evaluation 

A summary of the data (Appendix 17) can be found in Table 1 showing a success rate of 41.6%. In 

Table 1 the percentage of each error can be found together with the line causing the error, 

showing that all errors occur in lines 162, 216, 224, 338, 391. All these lines are found within lines 

139 to 246 and 315 to 419, which are the sections where the crease pattern is being modeled. 

Suggesting problems with the approach taken to model the crease patterns and a need to recode 

the computer program. However, it must not be understood that the goal is to eliminate all errors 

as certain inputs are not foldable and not intended for this method, and must be caught. At the 

same time, Table 1 shows no errors in the lines of code running the Angle-Ray algorithm itself, 

evidencing the algorithm’s high functionality and reliability for any input values.  
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Error Count Percentage 

NoError 208 41.60% 

(<class 'ZeroDivisionError'>, 162) 154 30.80% 

(<class 'ValueError'>, 216) 103 20.60% 

(<class 'ZeroDivisionError'>, 224) 16 3.20% 

(<class 'ZeroDivisionError'>, 216) 14 2.80% 

(<class 'ZeroDivisionError'>, 338) 4 0.80% 

(<class 'ZeroDivisionError'>, 391) 1 0.20% 

Total 500 100.00% 

Table 1. Summary of the data collected for the third test (Appendix 16) 

Conclusion 

Overall, this project was a success, developing a new origami designing algorithm called the 

Angle-Ray method which uses clever manipulation of trigonometry and a simple repeated folding 

pattern. The algorithm was successful at only using mathematical concepts taught in the middle 

year program, making origami designing more accessible. Additionally, the algorithm allows users 

to input desired flap lengths and connectivity with an option to optimize designs granting users a 

high degree of freedom and meeting level 3 criteria. However, the number of variables comes 

with the inconvenience of a large equation. To combat this the Angle-Ray computer program was 

developed to execute both the calculations and modeling of the crease patterns. The program 

was deemed well-functioning for reasonable origami designs but faces challenges when inputting 

random values causing errors in the modeling system. Fixing this issue requires a complete 

recoding of the program and a new modeling approach, a task for the future. 

This report has opened the doors to a new viable alternative origami designing algorithm. But still 

lacks reliability and needs subtle modifications and improvements. Therefore, any future study 

on the Angle-Ray method should focus on scrutinizing and inspecting its limits and applicability 

to both origami designing and engineering. 
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Appendix 

Appendix 1. Initial observations, traditional origami bases crease pattern

 
Figure 1813. Water bomb base 
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Figure 19. Fish base 



35 
 

 

Figure 20. Bird base 
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Figure 21. Frog base 
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Figure 22. Bird base all crease lines 
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Figure 23. Bird base investigation with circles 
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Figure 24. Bird base mountain and valley fold crease pattern investigation 
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Appendix 2. Experiment 1 data 

 

Figure 14. Testing the method of stage 1 experiment 1 for 5 flaps 
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Figure 15. Testing with the method of stage 1 experiment 1 for 5 flaps 
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Figure 16. Testing method of stage 1 experiment 1 for 5 flaps 
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Figure 17Testing method of stage 1 experiment 1 for 6 flaps 
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Figure 18. Testing method of stage 1 experiment 1 for 6 flaps 
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Appendix 3. Experiment 2 data, pattern-based algorithm

 
Figure 19. Designed crease pattern based on the method of stage 1 experiment 2 for 6 flaps 
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Figure 20. The folded structure of the crease pattern for 6 flaps above 
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Figure 21. Designed crease pattern based on the method of stage 1 experiment 2 for 8 flaps 
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Figure 22. The folded structure of the crease pattern for 8 flaps above 
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Figure 23. Designed crease pattern based on the method of stage 1 experiment 2 for 10 flaps 
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Figure 24. The folded structure of the crease pattern for 10 flaps above 
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Figure 25. Designed crease pattern based on the method of stage 1 experiment 2 for 11 flaps 
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Figure 26. The folded structure of the crease pattern for 11 flaps above 
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Figure 27. Designed crease pattern based on the method of stage 1 experiment 2 for 13 flaps 
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Figure 28. The folded structure of the crease pattern for 13 flaps above 
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Figure 29. Designed crease pattern based on the method of stage 1 experiment 2 for 14 flaps 



56 
 

 

Figure 30. The folded structure of the crease pattern for 14 flaps above 
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Figure 31. Designed crease pattern based on the method of stage 1 experiment 2 for 14 flaps different configuration 
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Figure 32. Folded structure of the crease patter for 14 flaps with a different configuration above 
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Figure 33. Designed crease pattern based on the method of stage 1 experiment 2 for 4, 8, 10, 12, 14, 16, 18 flaps 
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Figure 34. Folded structure using the method of stage 1 experiment 2 for 14 flaps 
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Figure 35. Folded structure using the method of stage 1 experiment 2 for 14 flaps different configuration 
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Figure 36. Folded structure using the method of stage 1 experiment 2 for 10 flaps 
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Figure 37. Folded structure using the method of stage 1 experiment 2 for 10 flaps differnet configuration 
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Figure 38. Folded structure using the method of stage 1 experiment 2 for 17 flaps 



65 
 

Appendix 4. Experiment 3 data, trigonometry-based algorithm

 

Figure 39. Six flap crease pattern 
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Figure 40. Six flap crease pattern folded 
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Figure 41. 8 flap crease pattern 
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Figure 42. 8 flap crease pattern folded 
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Figure 43. 10 flap crease pattern and 5 flap crease pattern 
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Figure 44. 10 flap crease pattern folded 
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Figure 45. 5 flap crease pattern folded 
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Figure 46. 7 flaps and 8 flaps crease pattern 
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Figure 47. 7 flaps crease pattern folded 
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Appendix 5. The final product of the first stage, booklet (Sydnes, 2022)
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Appendix 6. Testing of the final product of Stage 1 with intended structure

 

Figure 48. Crease pattern 8 petal flower and elephant-face 
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Figure 49. 8 petal flower crease pattern folded and shaped, success 
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Figure 50. Elephant-face crease pattern folded and shaped, success 
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Figure 51. Crease pattern for giraffe and a different 8 petal flower design 
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Figure 52. Giraffe crease pattern folded and shaped, fail 
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Figure 53. The different 8 petal flower crease pattern folded and shaped, fail 
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‘  

Figure 54. Crease pattern for fish 
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Figure 55. Fish crease pattern folded and shaped, success 
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Figure 56. Crease pattern for shrimp and octopus 
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Figure 57. Shrimp crease pattern folded and shaped, fail 



100 
 

 

Figure 58. Octopus crease pattern folded and shaped, fail 
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Figure 59. 3D 4 petal flower, success 
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Figure 60. Lion-face, success 
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Figure 61. 3D Clam shell (Tridacna), success 
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Figure 62. Airplane, success 
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Figure 63. Bird, success 



106 
 

 

Figure 64. Bird design final crease pattern 
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Appendix 7. Second stage experimental sketches exploring a new approach 
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Appendix 8. Third stage Equation 5 calculator 

import math 

totalFlapNumber = 1+ int(input("Total number of flaps?: ")) 

n = 1 

 

while n in range(totalFlapNumber): 

    flapOpen1 = float(input("Open-ended flap length 1: ")) 

    flapOpen2 = float(input("Open-ended flap length 2: ")) 

    flapTotal1 = float(input("Total flap length 1: ")) 

    flapTotal2 = float(input("Total flap length 2: ")) 

    connectivity = float(input("Connectivity value between the two open-ended 

flaps: ")) 

    value = ((flapTotal1**2) * (connectivity**2) + (flapTotal2**2) * 

(connectivity**2) - flapOpen1**2 - flapOpen2**2 - 

2*flapOpen1*flapOpen2)/(2*flapTotal1*flapTotal2) 

    angle = math.acos(value) * (180.0/math.pi) 

    print(angle) 

    n+=1 
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Appendix 9. Fourth stage additional mountain fold experiment 
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Appendix 10. The Angle-Ray computer program coded on Visual Studio Code 

import math 

import numpy as np 

from matplotlib import pyplot as plt 

from decimal import Decimal 

 

#inputs 

def totalFlapCount(): 

    global foTotal 

    foTotal = int(input("Total number of Open-ended flaps: ")) 

totalFlapCount() 

#collecting input 

ft = list(map(float, input("Total flap lengths: ").split())) 

fo = list(map(float, input("Open-ended flap lengths: ").split())) 

c = list(map(float, input("Connectivity values: ").split())) 

originalCValues = c 

closedEndedFlapSection = list(map(int, input("Position of Closed-ended flap 

sections: ").split())) 

#recalibration of c value for accurate connectivity output when folded 

if closedEndedFlapSection == [0]: 

    pass 

else: 

    for count in range(len(closedEndedFlapSection)): 

        ClosedEndedFlapSection = closedEndedFlapSection[count] 

        length = (ft[ClosedEndedFlapSection-1] + ft[ClosedEndedFlapSection]) / 

c[ClosedEndedFlapSection-1] 

        C = (fo[ClosedEndedFlapSection-1] + fo[ClosedEndedFlapSection]) / length 

        c[ClosedEndedFlapSection-1] = C 

 

#fo - 0.00000001 when equal to ft 

changedfo = [] 

for count in range(len(ft)): 

    if ft[count] == fo[count]: 

        fo[count] = fo[count]-10**-8 

        changedfo.append(bool(True)) 

    else: 

        changedfo.append(bool(False)) 

 

#calculation 

theta = [] 

for count in range(len(ft)):  

    fTotal1 = ft[count] 

    fOpen1 = fo[count] 

    if count+1 == len(ft): 
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        fTotal2 = ft[0] 

    else: 

        fTotal2 = ft[count+1] 

    if count+1 == len(fo): 

        fOpen2 = fo[0] 

    else: 

        fOpen2 = fo[count+1] 

    connectivity = c[count] 

    if connectivity == 0: 

        theta.append(0) 

    else: 

        numerator = ((fTotal1**2)*(connectivity**2)) + 

((fTotal2**2)*(connectivity**2)) - (fOpen1 + fOpen2)**2 

        denominator = 2*fTotal1*fTotal2*connectivity**2 

        value = min(1, max(-1, numerator/denominator)) 

        Theta = math.acos(value) * (180/math.pi) 

        theta.append(Theta) 

 

#sum of angles and optimality reply 

SumTheta = [] 

sumTheta = 0 

for count in range(len(theta)): 

    sumTheta = sumTheta + theta[count] 

    SumTheta.append(sumTheta) 

if sumTheta > 360: 

    print("Your specifications are impossible to fold. Unless it is 

optimized/fixed.") 

elif sumTheta == 360: 

    print("Your specifications is at the highest optimization possible for this 

method.") 

elif sumTheta < 180: 

    print("Your specifications is not foldable. Unless it is optimized/fixed.") 

else: 

    print("Your design is foldable, but is not of optimal design. Unless it is 

optimized/fixed") 

 

x = [] 

y = [] 

 

#need the initial line (vertical one in center) 

x.append(0) 

y.append(ft[0]) 

ft.append(ft[0]) 

count=1 
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while count in range(len(ft)): 

    angle = SumTheta[count-1] 

    radian = angle*(math.pi/180) 

    fTotal2 = ft[count]  

    X = math.sin(radian) * fTotal2  

    Y = math.cos(radian) * fTotal2 

    x.append(X) 

    y.append(Y) 

    count+=1 

 

oX = [] 

oY = [] 

oX.append(0) 

oY.append(ft[0] - fo[0]) 

fo.append(fo[0]) 

count=1 

SumTheta.append(360) 

while count in range(len(fo)): 

    angle = SumTheta[count-1] 

    radian = angle*(math.pi/180) 

    fOpen2 = ft[count] - fo[count] 

    X = math.sin(radian)*fOpen2 

    Y = math.cos(radian)*fOpen2 

    oX.append(X) 

    oY.append(Y) 

    count+=1 

 

#drawing to visualize 

count=0 

intersectionX = [] 

intersectionY= [] 

for count in range(len(oX)): 

    if count == len(oX)-1: 

        a1 = y[0] - oY[count] 

        b1 = oX[count] - x[0] 

        c1 = a1*oX[count]+b1*oY[count] 

        a2 = oY[0]-y[count] 

        b2 = x[count] - oX[0] 

        c2 = a2*x[count]+b2*y[count] 

        X = (b2*c1-b1*c2)/(a1*b2-a2*b1) 

        Y = (a1*c2-a2*c1)/(a1*b2-a2*b1) 

        intersectionX.append(X) 

        intersectionY.append(Y) 

    else: 
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        a1 = y[count+1] - oY[count] 

        b1 = oX[count] - x[count+1] 

        c1 = a1*oX[count]+b1*oY[count] 

        a2 = oY[count+1]-y[count] 

        b2 = x[count] - oX[count+1] 

        c2 = a2*x[count]+b2*y[count] 

        X = (b2*c1-b1*c2)/(a1*b2-a2*b1) 

        Y = (a1*c2-a2*c1)/(a1*b2-a2*b1) 

        intersectionX.append(X) 

        intersectionY.append(Y) 

    if count+1 in closedEndedFlapSection or count+1 == len(oX): 

        pass 

    else: 

        if count == len(oX)-1: 

            plt.plot([x[count], oX[0]], [y[count], oY[0]], 'r-', linewidth='1') 

#left to right 

            plt.plot([oX[count],x[0]], [oY[count],y[0]], 'r-', linewidth='1') 

#right to left 

            plt.plot([oX[count], X],[oY[count], Y],'-', 

color='black',  linewidth='1',) 

            plt.plot([X, oX[0]],[Y, oY[0]], '-', color='black', linewidth='1') 

            plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

        else: 

            plt.plot([x[count], oX[count+1]], [y[count], oY[count+1]], 'r-', 

linewidth='1') #left to right 

            plt.plot([oX[count],x[count+1]], [oY[count],y[count+1]], 'r-', 

linewidth='1') #right to left 

            plt.plot([oX[count], X],[oY[count], Y],'-', 

color='black',  linewidth='1',) 

            plt.plot([X, oX[count+1]],[Y, oY[count+1]], '-', color='black', 

linewidth='1') 

            plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

            plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

    x.append(0) 

    y.append(ft[0]) 

    plt.plot([x[count],0], [y[count],0],'b-') 

    plt.plot(x, y, 'b-') 

    plt.plot([0,0],[0,ft[0]], 'b-') 

 

#final line calculations 

count = 0 

Alpha = [] 

Beta = [] 

finalLineLength = [] 

for count in range(len(intersectionX)): 



124 
 

    x0 = intersectionX[count] 

    y0 = intersectionY[count] 

    x1 = x[count] 

    y1 = y[count] 

    ax = oX[count] - intersectionX[count] 

    ay = oY[count] - intersectionY[count] 

    bx = 0 - intersectionX[count] 

    by = 0 - intersectionY[count] 

    value = Decimal((x1-x0)/(y1-y0)) 

    if (y1-y0) > 0: 

        alpha = math.atan(value) 

        alpha = alpha * 180/math.pi 

        Alpha.append(alpha) 

    elif (y1-y0) < 0: 

        alpha = math.atan(value) 

        alpha = alpha * 180/math.pi 

        alpha = 180 + alpha 

        Alpha.append(alpha) 

    #angle between vectors 

    ab = ax*bx + ay*by 

    absA = math.sqrt(ax**2 + ay**2) 

    absB = math.sqrt(bx**2 + by**2) 

    beta = math.acos(ab/(absA*absB)) 

    beta = beta * 180/math.pi 

    Beta.append(beta) 

    #finding length of the final line 

    m1 = (y[count+1]-y[count])/(x[count+1]-x[count]) 

    b1 = y[count+1]-(m1*x[count+1]) 

    m2 = 1/math.tan((alpha+beta)*math.pi/180) 

    b2 = intersectionY[count]-(m2*intersectionX[count]) 

    fLIX = (b2-b1)/(m1-m2) 

    fLIY = m2*fLIX+b2 

    fLL = math.sqrt((fLIX-intersectionX[count])**2 + (fLIY-

intersectionY[count])**2) 

    finalLineLength.append(fLL) 

    if count+1 in closedEndedFlapSection or count+1 == len(intersectionX): 

        pass 

    else: 

        #plotting final line 

        X = intersectionX[count] + fLL*math.sin((alpha+beta)*math.pi/180) 

        Y = intersectionY[count] + fLL*math.cos((alpha+beta)*math.pi/180) 

        if changedfo[count]: 

            plt.plot([intersectionX[count],X],[intersectionY[count],Y],'-', 

color='red') 

        else: 
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            plt.plot([intersectionX[count],X],[intersectionY[count],Y],'-', 

color='blue') 

 

#drawing extra valley fold  

Theta = (360 - Decimal(sumTheta))/2 

angle = Decimal(SumTheta[len(SumTheta)-1]) + Decimal(Theta) 

radianTheta = (Decimal(Theta)+Decimal(sumTheta))*Decimal(math.pi/180) 

length = ft[0] * math.cos(radianTheta) 

radianAngle = Decimal(angle)*Decimal(math.pi/180) 

X = math.sin(radianAngle)*length 

Y = math.cos(radianAngle)*length 

plt.plot([0, -X], [0, Y], 'r-') 

 

#Finding length of axis 

gX = 0 

gY = 0 

for count in range(len(x)): 

    if gX < abs(x[count]): 

        gX = abs(x[count]) 

    if gY < abs(y[count]): 

        gY = abs(y[count]) 

    if gY < gX: 

        greatest = gX 

    else: 

        greatest = gY 

 

#controlling axis 

plt.axis([-greatest, greatest, -greatest, greatest]) 

plt.gca().set_aspect('equal') 

plt.xticks(color="white") 

plt.yticks(color="white") 

 

count = 0 

optimize = input("Do you wish to optimize/fix? Yes or No?: ") 

optimize = str(optimize) 

if optimize == "Yes" or optimize == "yes":  

    multiple = Decimal(360)/Decimal(sumTheta) 

    for count in range(len(theta)): 

        Theta = theta[count] 

        Theta = Decimal(Theta)*Decimal(multiple) 

        theta[count] = Theta 

    x = [] 

    y = [] 

    SumTheta = [] 

    sumTheta = 0 
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    for count in range(len(theta)): 

        sumTheta = sumTheta + theta[count] 

        SumTheta.append(sumTheta) 

    #need the initial line (vertical one in center) 

    x.append(0) 

    y.append(ft[0]) 

    SumTheta[len(SumTheta)-1] = 360 

    count=0 

    for count in range(len(SumTheta)): 

        angle = SumTheta[count-1] 

        radian = Decimal(angle)*Decimal(math.pi/180) 

        fTotal2 = ft[count]  

        X = math.sin(radian) * fTotal2  

        Y = math.cos(radian) * fTotal2 

        x.append(X) 

        y.append(Y) 

 

    oX = [] 

    oY = [] 

    oX.append(0) 

    oY.append(ft[0] - fo[0]) 

    fo.append(fo[0]) 

    count=1 

    for count in range(len(SumTheta)): 

        angle = SumTheta[count-1] 

        radian = Decimal(angle)*Decimal(math.pi/180) 

        fOpen2 = ft[count] - fo[count] 

        X = math.sin(radian)*fOpen2 

        Y = math.cos(radian)*fOpen2 

        oX.append(X) 

        oY.append(Y) 

    plt.figure().clear() 

else: 

    plt.show() 

    exit() 

 

#drawing to visualize 

count=0 

intersectionX = [] 

intersectionY= [] 

for count in range(len(oX)): 

    if count == len(oX)-1: 

        a1 = y[0] - oY[count] 

        b1 = oX[count] - x[0] 

        c1 = a1*oX[count]+b1*oY[count] 
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        a2 = oY[0]-y[count] 

        b2 = x[count] - oX[0] 

        c2 = a2*x[count]+b2*y[count] 

        X = (b2*c1-b1*c2)/(a1*b2-a2*b1) 

        Y = (a1*c2-a2*c1)/(a1*b2-a2*b1) 

        intersectionX.append(X) 

        intersectionY.append(Y) 

    else: 

        a1 = y[count+1] - oY[count] 

        b1 = oX[count] - x[count+1] 

        c1 = a1*oX[count]+b1*oY[count] 

        a2 = oY[count+1]-y[count] 

        b2 = x[count] - oX[count+1] 

        c2 = a2*x[count]+b2*y[count] 

        X = (b2*c1-b1*c2)/(a1*b2-a2*b1) 

        Y = (a1*c2-a2*c1)/(a1*b2-a2*b1) 

        intersectionX.append(X) 

        intersectionY.append(Y) 

    if count in closedEndedFlapSection: 

        pass 

    else: 

        if count == len(oX)-1: 

            plt.plot([x[count], oX[0]], [y[count], oY[0]], 'r-', linewidth='1') 

#left to right 

            plt.plot([oX[count],x[0]], [oY[count],y[0]], 'r-', linewidth='1') 

#right to left 

            plt.plot([oX[count], X],[oY[count], Y],'-', 

color='black',  linewidth='1',) 

            plt.plot([X, oX[0]],[Y, oY[0]], '-', color='black', linewidth='1') 

            plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

        else: 

            plt.plot([x[count], oX[count+1]], [y[count], oY[count+1]], 'r-', 

linewidth='1') #left to right 

            plt.plot([oX[count],x[count+1]], [oY[count],y[count+1]], 'r-', 

linewidth='1') #right to left 

            plt.plot([oX[count], X],[oY[count], Y],'-', 

color='black',  linewidth='1',) 

            plt.plot([X, oX[count+1]],[Y, oY[count+1]], '-', color='black', 

linewidth='1') 

            plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

    x.append(0) 

    y.append(ft[0]) 

    plt.plot([x[count],0], [y[count],0],'b-') 

    plt.plot(x, y, 'b-') 

    plt.plot([0,0],[0,ft[0]], 'b-') 
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#final line calculations 

count = 0 

Alpha = [] 

Beta = [] 

finalLineLength = [] 

for count in range(len(intersectionY)): 

    x0 = intersectionX[count] 

    y0 = intersectionY[count] 

    x1 = x[count] 

    y1 = y[count] 

    ax = oX[count] - intersectionX[count] 

    ay = oY[count] - intersectionY[count] 

    bx = 0 - intersectionX[count] 

    by = 0 - intersectionY[count] 

    value = Decimal((x1-x0)/(y1-y0)) 

    if (y1-y0) > 0: 

        alpha = math.atan(value) 

        alpha = alpha * 180/math.pi 

        Alpha.append(alpha) 

    elif (y1-y0) < 0: 

        alpha = math.atan(value) 

        alpha = alpha * 180/math.pi 

        alpha = 180 + alpha 

        Alpha.append(alpha) 

    #angle between vectors 

    ab = ax*bx + ay*by 

    absA = math.sqrt(ax**2 + ay**2) 

    absB = math.sqrt(bx**2 + by**2) 

    beta = math.acos(ab/(absA*absB)) 

    beta = beta * 180/math.pi 

    Beta.append(beta) 

    if count == len(x)-1: 

        #finding length of the final line 

        m1 = (y[0]-y[count])/(x[0]-x[count]) 

        b1 = y[0]-(m1*x[0]) 

        m2 = 1/math.tan((alpha+beta)*math.pi/180) 

        b2 = intersectionY[count]-(m2*intersectionX[count]) 

    else: 

        #finding length of the final line 

        m1 = (y[count+1]-y[count])/(x[count+1]-x[count]) 

        b1 = y[count+1]-(m1*x[count+1]) 

        m2 = 1/math.tan((alpha+beta)*math.pi/180) 

        b2 = intersectionY[count]-(m2*intersectionX[count]) 

    fLIX = (b2-b1)/(m1-m2) 
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    fLIY = m2*fLIX+b2 

    fLL = math.sqrt((fLIX-intersectionX[count])**2 + (fLIY-

intersectionY[count])**2) 

    if count in closedEndedFlapSection: 

        pass 

    else: 

        #plotting final line 

        X = intersectionX[count] + fLL*math.sin((alpha+beta)*math.pi/180) 

        Y = intersectionY[count] + fLL*math.cos((alpha+beta)*math.pi/180) 

        if changedfo[count-1]: 

            plt.plot([intersectionX[count],X],[intersectionY[count],Y],'-', 

color='red') 

        else: 

            plt.plot([intersectionX[count],X],[intersectionY[count],Y],'-', 

color='blue') 

plt.plot([0, 0], [0, ft[0]], 'b-') 

 

#Finding length of axis 

gX = 0 

gY = 0 

for count in range(len(x)): 

    if gX < abs(x[count]): 

        gX = abs(x[count]) 

    if gY < abs(y[count]): 

        gY = abs(y[count]) 

    if gY < gX: 

        greatest = gX 

    else: 

        greatest = gY 

#new connectivity  

angle = [] 

angle.append(0) 

newC = [] 

count = 0 

while count < foTotal: 

    angleRadian = theta[count] * Decimal((math.pi/180)) 

    cosAngle = math.cos(angleRadian) 

    if count+1 == foTotal: 

        numerator = (fo[count] + fo[0])**2 

        denominator = ft[count]**2 + ft[0]**2 - 2*ft[count]*ft[0]*cosAngle 

        C = numerator/denominator 

        newC.append(C) 

    else:  

        numerator = (fo[count] + fo[count+1])**2 
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        denominator = ft[count]**2 + ft[count+1]**2 - 

2*ft[count]*ft[count+1]*cosAngle 

        C = numerator/denominator 

        newC.append(C) 

    count+=1 

#showing initial input,  

print("Total number of flaps: " + str(foTotal)) 

ft.pop() 

print("The total lengths of flaps: " + str(ft)) 

fo.pop() 

fo.pop() 

print("The length of open-ended flaps: " + str(fo)) 

print("Original connectivity between flaps: " + str(originalCValues)) #not the 

true initial input, recalibrated for closed-ended flap section 

print("Final connectivity value: " + str(newC)) 

 

 

#controlling axis 

plt.axis([-greatest, greatest, -greatest, greatest]) 

plt.gca().set_aspect('equal') 

plt.xticks(color="white") 

plt.yticks(color="white") 

plt.show() 
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Appendix 11. User guide on the Angle-Ray computer program 
*The program was coded on Visual Studio code and has only been tested on this program.  

1. Once the program is started the following texts will be printed. 

2.  “Total number of Open-ended flaps:”, input the total number of flaps desired as an 

integer and press enter. 

3. “Total flap lengths:”, input all the total flap lengths in a clockwise order as float values. 

Remember to press space between every input and press enter once completed. 

4. “Open-ended flap lengths:”, input the open-ended flap lengths in the same order as the 

total flap lengths (Step 3) as float values. Remember to press space between every input 

and press enter once completed. 

5. “Connectivity values:”, input the connectivity between the flaps in the same order as the 

total flap lengths (Step 3) as float values. Remember to press space between every input 

and press enter once completed.  

6. “Position of Closed-ended flaps sections:”, input the flap number where a closed-ended 

flap section starts when going clockwise. The flap number is associated with the order of 

inputs from Steps 3, 4, and 5. Remember to press space between every input and press 

enter once completed. If no closed-ended flaps are desired input 0. 

7. If the initial inputs are not foldable you will be asked to optimize/fix the design. When 

answering “yes” or “Yes” an optimized/fixed crease pattern appears together with a 

crease pattern with initial inputs, otherwise only a crease pattern with the initial inputs 

appears.   

8. Once the crease pattern appears take a screenshot of it and paste it onto a document. 

From here you can rotate and enlarge the crease pattern to any paper shape for higher 

efficiency, or adjust the size to a desired one.  

9. Lastly print out the document (Step 8) and fold. The blue crease lines are mountain 

folds, and the red crease lines are valley folds. The rest of the crease patterns follow 

naturally when folding. 
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Appendix 12. Explanation of the Angle-Ray computer program 
1. Requesting the user to input all necessary values, (Appendix 13, colored in yellow) listed 

below.  

a. Total number of open-ended flaps (foTotal). 

b. The total flap lengths (ft). 

i. Which is recorded onto a list. 

c. The open-ended flap lengths (fo). 

i. Which is recorded onto a list. 

ii. Whenever 𝑓𝑜 = 𝑓𝑡 on the same flap Equation 7 is executed. 

𝑓𝑜𝑓 = 𝑓𝑜𝑖 − 10−8 

   𝑓𝑜𝑖 = initial length of the open-ended flap. 

   𝑓𝑜𝑓 = final length of the open-ended flap. 

Equation 7. Equation to avoid Zero Division Errors when 𝑓𝑜 = 𝑓𝑡  

The calculation is done to avoid Zero Division Errors in the modeling system 

when 𝑓𝑜 = 𝑓𝑡 . The subtraction value is the smallest value possible to 

subtract without causing a Zero Division Error on Visual Studio. The value 

is also small enough to not influence the final crease pattern thanks to 

overlap of crease lines.  

d. The connectivity between the open-ended flaps (c) 

i. Which is recorded onto a list. 

ii. For closed-ended flap sections the total flaps are interpreted as open-

ended flaps. 

e. The position of closed-ended flaps. 

i. If between flaps 2 and 3 the position is 2.  

ii. Based on the position the computer program recalibrates the inputted 

connectivity for this segment using Equation 8 in terms of the open-ended 

flap length for application in later calculations.  



133 
 

𝑙 =
𝑓𝑡1 + 𝑓𝑡2

𝑐𝑖
 

𝑐𝑓 =
𝑓𝑜1 + 𝑓𝑜2

𝑙
 

   𝑙 = length between the ends of the open-ended flaps, 𝑙 ≠ 0. 

𝑓𝑡1 = total flap length of one flap. 

𝑓𝑡2 = total flap length of the other neighboring flap. 

   fo1 = open-ended flap length of one flap. 

fo2 = open-ended flap length of the other neighboring flap. 

   𝑐𝑖 = the initial connectivity between the total flap lengths, 𝑐𝑖 ≠ 0. 

𝑐𝑓 = the new connectivity between the open-ended flaps to take account 

of the reinterpretation of the total flap as an open-ended flap  

 

Equation 8. Closed-ended flap section connectivity reinterpretation 

2. Calculations with Equation 5 are in a loop repeating for all flaps, moving clockwise 

(Appendix 13, colored in green). 

𝜃 =  cos−1
𝑓𝑡1

2𝑐2 + 𝑓𝑡2
2𝑐2 − (𝑓𝑜1 + 𝑓𝑜2)2

2𝑓𝑡1𝑓𝑡2𝑐2
 

𝑐, 𝑓𝑡1, 𝑓𝑡2 ≠ 0 

3. Using inputs and angles calculated in Step 2 the program draws a crease pattern based on 

the method from the third stage (Appendix 13, colored in light blue).  

a. The crease pattern is drawn using linear functions, vector calculations, and 

Matplotlib treating it as a graph. 

4. However, for some values the output of Step 3 is not foldable or not efficient. This is 

reported to the user, and they will get an option to optimize/fix their design which alters 

connectivity values (Appendix 13, colored in pink).  

a. Crease patterns are not foldable when ∑ 𝜃 > 360 or ∑ 𝜃 < 180 

5. If the user answers “yes” or “Yes” in Step 4 the computer program will run all output of 

Equation 5 calculated in Step 2 through Equation 6 recalibrating the angles (Appendix 13, 

colored in red). 
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𝜑 = 𝜃 ∗
360

∑ 𝜃
 

∑ 𝜃 ≠ 0 

If the user answers anything other than “yes” or “Yes” they will be presented with the 

crease pattern generated in Step 3 and the program terminates.  

6. Following Step 5 the program draws a new crease pattern using the new angles (𝜑) from 

Step 5 and the user is presented with the new crease pattern and the initial crease pattern 

(Step 3) (Appendix 13¸ colored in gray).  

7. Finally, the program prints out all the initial inputs together with the calibrated 

connectivity values and terminates. 
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Appendix 13. Color-coded computer program by segments 
import math 

import numpy as np 

from matplotlib import pyplot as plt 

from decimal import Decimal 

 

#inputs 

def totalFlapCount(): 

    global foTotal 

    foTotal = int(input("Total number of Open-ended flaps: ")) 

totalFlapCount() 

#collecting input 

ft = list(map(float, input("Total flap lengths: ").split())) 

fo = list(map(float, input("Open-ended flap lengths: ").split())) 

c = list(map(float, input("Connectivity values: ").split())) 

originalCValues = c 

closedEndedFlapSection = list(map(int, input("Position of Closed-ended flap sections: ").split())) 

#recalibration of c value for accurate connectivity output when folded 

if closedEndedFlapSection == [0]: 

    pass 

else: 

    for count in range(len(closedEndedFlapSection)): 

        ClosedEndedFlapSection = closedEndedFlapSection[count] 

        length = (ft[ClosedEndedFlapSection-1] + ft[ClosedEndedFlapSection]) / c[ClosedEndedFlapSection-1] 
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        C = (fo[ClosedEndedFlapSection-1] + fo[ClosedEndedFlapSection]) / length 

        c[ClosedEndedFlapSection-1] = C 

 

#fo - 0.00000001 when equal to ft 

changedfo = [] 

for count in range(len(ft)): 

    if ft[count] == fo[count]: 

        fo[count] = fo[count]-10**-8 

        changedfo.append(bool(True)) 

    else: 

        changedfo.append(bool(False)) 

 

 

#calculation 

theta = [] 

for count in range(len(ft)):  

    fTotal1 = ft[count] 

    fOpen1 = fo[count] 

    if count+1 == len(ft): 

        fTotal2 = ft[0] 

    else: 

        fTotal2 = ft[count+1] 

    if count+1 == len(fo): 

        fOpen2 = fo[0] 
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    else: 

        fOpen2 = fo[count+1] 

    connectivity = c[count] 

    if connectivity == 0: 

        theta.append(0) 

    else: 

        numerator = ((fTotal1**2)*(connectivity**2)) + ((fTotal2**2)*(connectivity**2)) - (fOpen1 + fOpen2)**2 

        denominator = 2*fTotal1*fTotal2*connectivity**2 

        value = min(1, max(-1, numerator/denominator)) 

        Theta = math.acos(value) * (180/math.pi) 

        theta.append(Theta) 

 

#sum of angles and optimality reply 

SumTheta = [] 

sumTheta = 0 

for count in range(len(theta)): 

    sumTheta = sumTheta + theta[count] 

    SumTheta.append(sumTheta) 

if sumTheta > 360: 

    print("Your specifications are impossible to fold. Unless it is optimized/fixed.") 

elif sumTheta == 360: 

    print("Your specifications is at the highest optimization possible for this method.") 

elif sumTheta < 180: 

    print("Your specifications is not foldable. Unless it is optimized/fixed.") 
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else: 

    print("Your design is foldable, but is not of optimal design. Unless it is optimized/fixed") 

 

 

x = [] 

y = [] 

 

#need the initial line (vertical one in center) 

x.append(0) 

y.append(ft[0]) 

ft.append(ft[0]) 

count=1 

while count in range(len(ft)): 

    angle = SumTheta[count-1] 

    radian = angle*(math.pi/180) 

    fTotal2 = ft[count]  

    X = math.sin(radian) * fTotal2  

    Y = math.cos(radian) * fTotal2 

    x.append(X) 

    y.append(Y) 

    count+=1 

 

 

oX = [] 
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oY = [] 

oX.append(0) 

oY.append(ft[0] - fo[0]) 

fo.append(fo[0]) 

count=1 

SumTheta.append(360) 

while count in range(len(fo)): 

    angle = SumTheta[count-1] 

    radian = angle*(math.pi/180) 

    fOpen2 = ft[count] - fo[count] 

    X = math.sin(radian)*fOpen2 

    Y = math.cos(radian)*fOpen2 

    oX.append(X) 

    oY.append(Y) 

    count+=1 

 

#drawing to visualize 

count=0 

intersectionX = [] 

intersectionY= [] 

for count in range(len(oX)): 

    if count == len(oX)-1: 

        a1 = y[0] - oY[count] 

        b1 = oX[count] - x[0] 
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        c1 = a1*oX[count]+b1*oY[count] 

        a2 = oY[0]-y[count] 

        b2 = x[count] - oX[0] 

        c2 = a2*x[count]+b2*y[count] 

        X = (b2*c1-b1*c2)/(a1*b2-a2*b1) 

        Y = (a1*c2-a2*c1)/(a1*b2-a2*b1) 

        intersectionX.append(X) 

        intersectionY.append(Y) 

    else: 

        a1 = y[count+1] - oY[count] 

        b1 = oX[count] - x[count+1] 

        c1 = a1*oX[count]+b1*oY[count] 

        a2 = oY[count+1]-y[count] 

        b2 = x[count] - oX[count+1] 

        c2 = a2*x[count]+b2*y[count] 

        X = (b2*c1-b1*c2)/(a1*b2-a2*b1) 

        Y = (a1*c2-a2*c1)/(a1*b2-a2*b1) 

        intersectionX.append(X) 

        intersectionY.append(Y) 

    if count+1 in closedEndedFlapSection or count+1 == len(oX): 

        pass 

    else: 

        if count == len(oX)-1: 

            plt.plot([x[count], oX[0]], [y[count], oY[0]], 'r-', linewidth='1') #left to right 



141 
 

            plt.plot([oX[count],x[0]], [oY[count],y[0]], 'r-', linewidth='1') #right to left 

            plt.plot([oX[count], X],[oY[count], Y],'-', color='black',  linewidth='1',) 

            plt.plot([X, oX[0]],[Y, oY[0]], '-', color='black', linewidth='1') 

            plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

        else: 

            plt.plot([x[count], oX[count+1]], [y[count], oY[count+1]], 'r-', linewidth='1') #left to right 

            plt.plot([oX[count],x[count+1]], [oY[count],y[count+1]], 'r-', linewidth='1') #right to left 

            plt.plot([oX[count], X],[oY[count], Y],'-', color='black',  linewidth='1',) 

            plt.plot([X, oX[count+1]],[Y, oY[count+1]], '-', color='black', linewidth='1') 

            plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

            plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

    x.append(0) 

    y.append(ft[0]) 

    plt.plot([x[count],0], [y[count],0],'b-') 

    plt.plot(x, y, 'b-') 

    plt.plot([0,0],[0,ft[0]], 'b-') 

 

#final line calculations 

count = 0 

Alpha = [] 

Beta = [] 

finalLineLength = [] 

for count in range(len(intersectionX)): 

    x0 = intersectionX[count] 
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    y0 = intersectionY[count] 

    x1 = x[count] 

    y1 = y[count] 

    ax = oX[count] - intersectionX[count] 

    ay = oY[count] - intersectionY[count] 

    bx = 0 - intersectionX[count] 

    by = 0 - intersectionY[count] 

    value = Decimal((x1-x0)/(y1-y0)) 

    if (y1-y0) > 0: 

        alpha = math.atan(value) 

        alpha = alpha * 180/math.pi 

        Alpha.append(alpha) 

    elif (y1-y0) < 0: 

        alpha = math.atan(value) 

        alpha = alpha * 180/math.pi 

        alpha = 180 + alpha 

        Alpha.append(alpha) 

    #angle between vectors 

    ab = ax*bx + ay*by 

    absA = math.sqrt(ax**2 + ay**2) 

    absB = math.sqrt(bx**2 + by**2) 

    beta = math.acos(ab/(absA*absB)) 

    beta = beta * 180/math.pi 

    Beta.append(beta) 
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    #finding length of the final line 

    m1 = (y[count+1]-y[count])/(x[count+1]-x[count]) 

    b1 = y[count+1]-(m1*x[count+1]) 

    m2 = 1/math.tan((alpha+beta)*math.pi/180) 

    b2 = intersectionY[count]-(m2*intersectionX[count]) 

    fLIX = (b2-b1)/(m1-m2) 

    fLIY = m2*fLIX+b2 

    fLL = math.sqrt((fLIX-intersectionX[count])**2 + (fLIY-intersectionY[count])**2) 

    finalLineLength.append(fLL) 

    if count+1 in closedEndedFlapSection or count+1 == len(intersectionX): 

        pass 

    else: 

        #plotting final line 

        X = intersectionX[count] + fLL*math.sin((alpha+beta)*math.pi/180) 

        Y = intersectionY[count] + fLL*math.cos((alpha+beta)*math.pi/180) 

        if changedfo[count]: 

            plt.plot([intersectionX[count],X],[intersectionY[count],Y],'-', color='red') 

        else: 

            plt.plot([intersectionX[count],X],[intersectionY[count],Y],'-', color='blue') 

 

#drawing extra valley fold  

Theta = (360 - Decimal(sumTheta))/2 

angle = Decimal(SumTheta[len(SumTheta)-1]) + Decimal(Theta) 

radianTheta = (Decimal(Theta)+Decimal(sumTheta))*Decimal(math.pi/180) 
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length = ft[0] * math.cos(radianTheta) 

radianAngle = Decimal(angle)*Decimal(math.pi/180) 

X = math.sin(radianAngle)*length 

Y = math.cos(radianAngle)*length 

plt.plot([0, -X], [0, Y], 'r-') 

 

#Finding length of axis 

gX = 0 

gY = 0 

for count in range(len(x)): 

    if gX < abs(x[count]): 

        gX = abs(x[count]) 

    if gY < abs(y[count]): 

        gY = abs(y[count]) 

    if gY < gX: 

        greatest = gX 

    else: 

        greatest = gY 

 

#controlling axis 

plt.axis([-greatest, greatest, -greatest, greatest]) 

plt.gca().set_aspect('equal') 

plt.xticks(color="white") 

plt.yticks(color="white") 
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count = 0 

optimize = input("Do you wish to optimize/fix? Yes or No?: ") 

optimize = str(optimize) 

if optimize == "Yes" or optimize == "yes":  

    multiple = Decimal(360)/Decimal(sumTheta) 

    for count in range(len(theta)): 

        Theta = theta[count] 

        Theta = Decimal(Theta)*Decimal(multiple) 

        theta[count] = Theta 

    x = [] 

    y = [] 

    SumTheta = [] 

    sumTheta = 0 

    for count in range(len(theta)): 

        sumTheta = sumTheta + theta[count] 

        SumTheta.append(sumTheta) 

    #need the initial line (vertical one in center) 

    x.append(0) 

    y.append(ft[0]) 

    SumTheta[len(SumTheta)-1] = 360 

    count=0 

    for count in range(len(SumTheta)): 

        angle = SumTheta[count-1] 
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        radian = Decimal(angle)*Decimal(math.pi/180) 

        fTotal2 = ft[count]  

        X = math.sin(radian) * fTotal2  

        Y = math.cos(radian) * fTotal2 

        x.append(X) 

        y.append(Y) 

 

    oX = [] 

    oY = [] 

    oX.append(0) 

    oY.append(ft[0] - fo[0]) 

    fo.append(fo[0]) 

    count=1 

    for count in range(len(SumTheta)): 

        angle = SumTheta[count-1] 

        radian = Decimal(angle)*Decimal(math.pi/180) 

        fOpen2 = ft[count] - fo[count] 

        X = math.sin(radian)*fOpen2 

        Y = math.cos(radian)*fOpen2 

        oX.append(X) 

        oY.append(Y) 

    plt.figure().clear() 

else: 

    plt.show() 
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    exit() 

 

#drawing to visualize 

count=0 

intersectionX = [] 

intersectionY= [] 

for count in range(len(oX)): 

    if count == len(oX)-1: 

        a1 = y[0] - oY[count] 

        b1 = oX[count] - x[0] 

        c1 = a1*oX[count]+b1*oY[count] 

        a2 = oY[0]-y[count] 

        b2 = x[count] - oX[0] 

        c2 = a2*x[count]+b2*y[count] 

        X = (b2*c1-b1*c2)/(a1*b2-a2*b1) 

        Y = (a1*c2-a2*c1)/(a1*b2-a2*b1) 

        intersectionX.append(X) 

        intersectionY.append(Y) 

    else: 

        a1 = y[count+1] - oY[count] 

        b1 = oX[count] - x[count+1] 

        c1 = a1*oX[count]+b1*oY[count] 

        a2 = oY[count+1]-y[count] 

        b2 = x[count] - oX[count+1] 
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        c2 = a2*x[count]+b2*y[count] 

        X = (b2*c1-b1*c2)/(a1*b2-a2*b1) 

        Y = (a1*c2-a2*c1)/(a1*b2-a2*b1) 

        intersectionX.append(X) 

        intersectionY.append(Y) 

    if count in closedEndedFlapSection: 

        pass 

    else: 

        if count == len(oX)-1: 

            plt.plot([x[count], oX[0]], [y[count], oY[0]], 'r-', linewidth='1') #left to right 

            plt.plot([oX[count],x[0]], [oY[count],y[0]], 'r-', linewidth='1') #right to left 

            plt.plot([oX[count], X],[oY[count], Y],'-', color='black',  linewidth='1',) 

            plt.plot([X, oX[0]],[Y, oY[0]], '-', color='black', linewidth='1') 

            plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

        else: 

            plt.plot([x[count], oX[count+1]], [y[count], oY[count+1]], 'r-', linewidth='1') #left to right 

            plt.plot([oX[count],x[count+1]], [oY[count],y[count+1]], 'r-', linewidth='1') #right to left 

            plt.plot([oX[count], X],[oY[count], Y],'-', color='black',  linewidth='1',) 

            plt.plot([X, oX[count+1]],[Y, oY[count+1]], '-', color='black', linewidth='1') 

            plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

    x.append(0) 

    y.append(ft[0]) 

    plt.plot([x[count],0], [y[count],0],'b-') 

    plt.plot(x, y, 'b-') 
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    plt.plot([0,0],[0,ft[0]], 'b-') 

 

#final line calculations 

count = 0 

Alpha = [] 

Beta = [] 

finalLineLength = [] 

for count in range(len(intersectionY)): 

    x0 = intersectionX[count] 

    y0 = intersectionY[count] 

    x1 = x[count] 

    y1 = y[count] 

    ax = oX[count] - intersectionX[count] 

    ay = oY[count] - intersectionY[count] 

    bx = 0 - intersectionX[count] 

    by = 0 - intersectionY[count] 

    value = Decimal((x1-x0)/(y1-y0)) 

    if (y1-y0) > 0: 

        alpha = math.atan(value) 

        alpha = alpha * 180/math.pi 

        Alpha.append(alpha) 

    elif (y1-y0) < 0: 

        alpha = math.atan(value) 

        alpha = alpha * 180/math.pi 
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        alpha = 180 + alpha 

        Alpha.append(alpha) 

    #angle between vectors 

    ab = ax*bx + ay*by 

    absA = math.sqrt(ax**2 + ay**2) 

    absB = math.sqrt(bx**2 + by**2) 

    beta = math.acos(ab/(absA*absB)) 

    beta = beta * 180/math.pi 

    Beta.append(beta) 

    if count == len(x)-1: 

        #finding length of the final line 

        m1 = (y[0]-y[count])/(x[0]-x[count]) 

        b1 = y[0]-(m1*x[0]) 

        m2 = 1/math.tan((alpha+beta)*math.pi/180) 

        b2 = intersectionY[count]-(m2*intersectionX[count]) 

    else: 

        #finding length of the final line 

        m1 = (y[count+1]-y[count])/(x[count+1]-x[count]) 

        b1 = y[count+1]-(m1*x[count+1]) 

        m2 = 1/math.tan((alpha+beta)*math.pi/180) 

        b2 = intersectionY[count]-(m2*intersectionX[count]) 

    fLIX = (b2-b1)/(m1-m2) 

    fLIY = m2*fLIX+b2 

    fLL = math.sqrt((fLIX-intersectionX[count])**2 + (fLIY-intersectionY[count])**2) 
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    if count in closedEndedFlapSection: 

        pass 

    else: 

        #plotting final line 

        X = intersectionX[count] + fLL*math.sin((alpha+beta)*math.pi/180) 

        Y = intersectionY[count] + fLL*math.cos((alpha+beta)*math.pi/180) 

        if changedfo[count-1]: 

            plt.plot([intersectionX[count],X],[intersectionY[count],Y],'-', color='red') 

        else: 

            plt.plot([intersectionX[count],X],[intersectionY[count],Y],'-', color='blue') 

plt.plot([0, 0], [0, ft[0]], 'b-') 

 

#Finding length of axis 

gX = 0 

gY = 0 

for count in range(len(x)): 

    if gX < abs(x[count]): 

        gX = abs(x[count]) 

    if gY < abs(y[count]): 

        gY = abs(y[count]) 

    if gY < gX: 

        greatest = gX 

    else: 

        greatest = gY 
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#new connectivity  

angle = [] 

angle.append(0) 

newC = [] 

count = 0 

while count < foTotal: 

    angleRadian = theta[count] * Decimal((math.pi/180)) 

    cosAngle = math.cos(angleRadian) 

    if count+1 == foTotal: 

        numerator = (fo[count] + fo[0])**2 

        denominator = ft[count]**2 + ft[0]**2 - 2*ft[count]*ft[0]*cosAngle 

        C = numerator/denominator 

        newC.append(C) 

    else:  

        numerator = (fo[count] + fo[count+1])**2 

        denominator = ft[count]**2 + ft[count+1]**2 - 2*ft[count]*ft[count+1]*cosAngle 

        C = numerator/denominator 

        newC.append(C) 

    count+=1 

#showing initial input,  

print("Total number of flaps: " + str(foTotal)) 

ft.pop() 

print("The total lengths of flaps: " + str(ft)) 

fo.pop() 
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fo.pop() 

print("The length of open-ended flaps: " + str(fo)) 

print("Original connectivity between flaps: " + str(originalCValues)) #not the true initial value, perhaps fine. If 

bodered 

print("Final connectivity value: " + str(newC)) 

 

#controlling axis 

plt.axis([-greatest, greatest, -greatest, greatest]) 

plt.gca().set_aspect('equal') 

plt.xticks(color="white") 

plt.yticks(color="white") 

plt.show() 
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Appendix 14. First test of the computer program testing with human inputs 
Not all tests were well-recorded, hence only a selection is attached 

 

 5 

[5.0, 5.0, 5.0, 5.0, 5.0, 5.0] 

[2.0, 2.0, 2.0, 2.0, 2.0, 2.0] 

[1.0, 0.7, 1.0, 0.7, 1.0] 

280.86868918539693 
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 [5.0, 5.0, 5.0, 5.0, 5.0, 5.0] 

[4.0, 4.0, 4.0, 4.0, 4.0, 4.0] 

[2.0, 2.0, 2.0, 2.0, 2.0] 
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6 

[10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0] 

[5.0, 4.0, 4.0, 5.0, 4.0, 4.0, 5.0] 

 

[1.0, 0.7, 1.0, 1.0, 0.7, 1.0] 

353.34908991941006 
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10 

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] 

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] 

[3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5] 

332.03099198040474 
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1.6 

Total number of flaps: 5  

The total lengths of flaps: [5.0, 5.0, 5.0, 5.0, 5.0] 

The length of open-ended flaps: [2.0, 3.0, 3.0, 3.0, 3.0] 

Original connectivity between flaps: [1.0, 1.0, 1.0, 1.0, 1.0] 

Final connectivity value: [1.1472269810229754, 0.7181927942875258, 1.1394502211052069, 

0.7181927942875258, 1.1472269810229754] 
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 1.7 

Total number of flaps: 6 

The total lengths of flaps: [6.0, 6.0, 6.0, 6.0, 6.0, 6.0] 

The length of open-ended flaps: [3.0, 4.0, 4.0, 3.0, 4.0, 4.0] 

Original connectivity between flaps: [1.0, 2.0, 1.0, 1.0, 2.0, 1.0] 

Final connectivity value: [1.7968198242362217, 1.15157571120294, 1.7968198242362217, 

1.7968198242362217, 1.15157571120294, 1.7968198242362217] 
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Total number of flaps: 7 

The total lengths of flaps: [7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0] 

The length of open-ended flaps: [5.0, 6.0, 7.0, 5.0, 5.0, 7.0, 6.0] 

Original connectivity between flaps: [2.0, 2.0, 1.0, 1.0, 1.0, 2.0, 2.0] 

Final connectivity value: [10.02359966086807, 10.143907382277579, 0.5998927888350684, 

2.5650482517504, 0.5998927888350684, 10.143907382277579, 10.02359966086807] 
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Total number of flaps: 5 

The total lengths of flaps: [5.0, 6.0, 7.0, 6.0, 5.0] 

The length of open-ended flaps: [4.0, 4.0, 4.0, 4.0, 4.0] 

Original connectivity between flaps: [2.0, 2.0, 2.0, 2.0, 2.0] 

Final connectivity value: [1.4164112101142428, 1.3755789187085947, 1.3755789187085947, 

1.4164112101142428, 1.399921022532155] 
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Total number of flaps: 5 

The total lengths of flaps: [4.0, 5.0, 5.0, 5.0, 5.0] 

The length of open-ended flaps: [3.0, 4.0, 4.0, 4.0, 4.0] 

Original connectivity between flaps: [2.0, 1.0, 1.0, 2.0, 2.0] 

Final connectivity value: [3.765741215338876, 0.9538351956674005, 0.9538351956674005, 

3.748211468822247, 3.765741215338876] 
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 Same as one earlier, but not optimized 
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Total number of flaps: 5 

The total lengths of flaps: [5.0, 5.0, 5.0, 5.0, 5.0] 

The length of open-ended flaps: [3.0, 3.0, 3.0, 3.0, 3.0] 

Original connectivity between flaps: [2.0, 2.0, 2.0, 2.0, 2.0] 

Final connectivity value: [1.6372589605444714, 0.6507507847943713, 1.6372589605444714, 

0.6507507847943713, 1.6372589605444714] 
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Same as earlier one, just not optimized 
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Total number of flaps: 5 

The total lengths of flaps: [5.0, 5.0, 5.0, 5.0, 5.0] 

The length of open-ended flaps: [4.999999999999999, 4.999999999999999, 4.999999999999999, 

4.999999999999999, 4 .999999999999999]        

Original connectivity between flaps: [2.0, 2.0, 2.0, 2.0, 2.0] 

Final connectivity value: [2.8944271909999144, 2.8944271909999144, 2.8944271909999144, 

2.8944271909999144, 2.8944271909999144]   
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Total number of flaps: 6 

The total lengths of flaps: [6.0, 5.0, 4.0, 3.0, 3.0, 4.0] 

The length of open-ended flaps: [3.0, 2.0, 2.0, 1.0, 1.0, 2.0] 

Original connectivity between flaps: [0.8, 1.3, 1.0, 1.5, 0.7, 2.0] 
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 Same as earlier, just optimized 
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Total number of flaps: 5 

The total lengths of flaps: [1.0, 1.0, 1.0, 1.0, 1.0] 

The length of open-ended flaps: [0.99999999, 0.99999999, 0.5, 0.5, 0.99999999]      

Original connectivity between flaps: [2.0, 2.0, 2.0, 2.0, 2.0] 

Final connectivity value: [2.4047222771414805, 1.3526562816502945, 2.270779539114497, 

1.3526562816502945, 2.4047222771414805] 
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Appendix 15. The computer program used in the Second and Third test 

import math 

import numpy as np 

from matplotlib import pyplot as plt 

from decimal import Decimal 

import random 

import openpyxl 

import random 

import sys, os 

import traceback 

 

# Create a workbook and select the active worksheet 

wb = openpyxl.Workbook() 

worksheet = wb.active 

 

#headers to the worksheet 

worksheet.append(["Flap number", "FT length", "FO length", "c-values", "Error"]) 

     

#Generate the variables 

 

repetitions = int(input()) 

def generateRandomValues(repetitions): 

    for i in range(repetitions): 

        foTotal = random.randrange(3,10) 

        ft = [] 

        fo = [] 

        c = [] 

        oft = [] 

        ofo = [] 

        oc = [] 

        closedEndedFlapSection = [0] 

        for j in range(foTotal): 

            FT = round(random.uniform(1,10), 2) 

            FO = round(random.uniform(1,FT), 2) 

            C = round(random.uniform(0.01,1), 2) 

            ft.append(FT) 

            fo.append(FO) 

            c.append(C) 

            oft.append(FT) 

            ofo.append(FO) 

            oc.append(C) 

        print(foTotal, len(ft), len(fo), len(c)) 

        #NClosedEndedFlapSection = random.randrange(0, foTotal) 

        #if NClosedEndedFlapSection == 0: 

        #    closedEndedFlapSection.append(0) 
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        #    pass 

        #else: 

        #    for i in range(NClosedEndedFlapSection): 

        #        ClosedEndedFlapSection = random.randrange(1, foTotal) 

        #        closedEndedFlapSection.append(ClosedEndedFlapSection) 

 

        try: 

            #recalibration of c value for accurate connectivity output when 

folded 

            if closedEndedFlapSection == [0]: 

                pass 

            else: 

                for count in range(len(closedEndedFlapSection)): 

                    ClosedEndedFlapSection = closedEndedFlapSection[count] 

                    length = (ft[ClosedEndedFlapSection-1] + 

ft[ClosedEndedFlapSection]) / c[ClosedEndedFlapSection-1] 

                    C = (fo[ClosedEndedFlapSection-1] + 

fo[ClosedEndedFlapSection]) / length 

                    c[ClosedEndedFlapSection-1] = C 

 

            #fo - 0.00000001 when equal to ft 

            changedfo = [] 

            for count in range(len(ft)): 

                if ft[count] == fo[count]: 

                    fo[count] = fo[count]-10**-8 

                    changedfo.append(bool(True)) 

                else: 

                    changedfo.append(bool(False)) 

 

            #calculation 

            theta = [] 

            for count in range(len(ft)):  

                fTotal1 = ft[count] 

                fOpen1 = fo[count] 

                if count+1 == len(ft): 

                    fTotal2 = ft[0] 

                else: 

                    fTotal2 = ft[count+1] 

                if count+1 == len(fo): 

                    fOpen2 = fo[0] 

                else: 

                    fOpen2 = fo[count+1] 

                connectivity = c[count] 

                if connectivity == 0: 
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                    theta.append(0) 

                else: 

                    numerator = ((fTotal1**2)*(connectivity**2)) + 

((fTotal2**2)*(connectivity**2)) - (fOpen1 + fOpen2)**2 

                    denominator = 2*fTotal1*fTotal2*connectivity**2 

                    value = min(1, max(-1, numerator/denominator)) 

                    Theta = math.acos(value) * (180/math.pi) 

                    theta.append(Theta) 

 

            #sum of angles and optimality reply 

            SumTheta = [] 

            sumTheta = 0 

            for count in range(len(theta)): 

                sumTheta = sumTheta + theta[count] 

                SumTheta.append(sumTheta) 

 

            x = [] 

            y = [] 

 

            #need the initial line (vertical one in center) 

            x.append(0) 

            y.append(ft[0]) 

            ft.append(ft[0]) 

            count=1 

            while count in range(len(ft)): 

                angle = SumTheta[count-1] 

                radian = angle*(math.pi/180) 

                fTotal2 = ft[count]  

                X = math.sin(radian) * fTotal2  

                Y = math.cos(radian) * fTotal2 

                x.append(X) 

                y.append(Y) 

                count+=1 

 

            oX = [] 

            oY = [] 

            oX.append(0) 

            oY.append(ft[0] - fo[0]) 

            fo.append(fo[0]) 

            count=1 

            SumTheta.append(360) 

            while count in range(len(fo)): 

                angle = SumTheta[count-1] 
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                radian = angle*(math.pi/180) 

                fOpen2 = ft[count] - fo[count] 

                X = math.sin(radian)*fOpen2 

                Y = math.cos(radian)*fOpen2 

                oX.append(X) 

                oY.append(Y) 

                count+=1 

 

            #drawing to visualize 

            count=0 

            intersectionX = [] 

            intersectionY= [] 

            for count in range(len(oX)): 

                if count == len(oX)-1: 

                    a1 = y[0] - oY[count] 

                    b1 = oX[count] - x[0] 

                    c1 = a1*oX[count]+b1*oY[count] 

                    a2 = oY[0]-y[count] 

                    b2 = x[count] - oX[0] 

                    c2 = a2*x[count]+b2*y[count] 

                    X = (b2*c1-b1*c2)/(a1*b2-a2*b1) 

                    Y = (a1*c2-a2*c1)/(a1*b2-a2*b1) 

                    intersectionX.append(X) 

                    intersectionY.append(Y) 

                else: 

                    a1 = y[count+1] - oY[count] 

                    b1 = oX[count] - x[count+1] 

                    c1 = a1*oX[count]+b1*oY[count] 

                    a2 = oY[count+1]-y[count] 

                    b2 = x[count] - oX[count+1] 

                    c2 = a2*x[count]+b2*y[count] 

                    X = (b2*c1-b1*c2)/(a1*b2-a2*b1) 

                    Y = (a1*c2-a2*c1)/(a1*b2-a2*b1) 

                    intersectionX.append(X) 

                    intersectionY.append(Y) 

                if count+1 in closedEndedFlapSection or count+1 == len(oX): 

                    pass 

                else: 

                    if count == len(oX)-1: 

                        plt.plot([x[count], oX[0]], [y[count], oY[0]], 'r-', 

linewidth='1') #left to right 

                        plt.plot([oX[count],x[0]], [oY[count],y[0]], 'r-', 

linewidth='1') #right to left 

                        plt.plot([oX[count], X],[oY[count], Y],'-', 

color='black',  linewidth='1',) 
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                        plt.plot([X, oX[0]],[Y, oY[0]], '-', color='black', 

linewidth='1') 

                        plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

                    else: 

                        plt.plot([x[count], oX[count+1]], [y[count], 

oY[count+1]], 'r-', linewidth='1') #left to right 

                        plt.plot([oX[count],x[count+1]], [oY[count],y[count+1]], 

'r-', linewidth='1') #right to left 

                        plt.plot([oX[count], X],[oY[count], Y],'-', 

color='black',  linewidth='1',) 

                        plt.plot([X, oX[count+1]],[Y, oY[count+1]], '-', 

color='black', linewidth='1') 

                        plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

                        plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

                x.append(0) 

                y.append(ft[0]) 

                plt.plot([x[count],0], [y[count],0],'b-') 

                plt.plot(x, y, 'b-') 

                plt.plot([0,0],[0,ft[0]], 'b-') 

 

            #final line calculations 

            count = 0 

            Alpha = [] 

            Beta = [] 

            finalLineLength = [] 

            for count in range(len(intersectionX)): 

                x0 = intersectionX[count] 

                y0 = intersectionY[count] 

                x1 = x[count] 

                y1 = y[count] 

                ax = oX[count] - intersectionX[count] 

                ay = oY[count] - intersectionY[count] 

                bx = 0 - intersectionX[count] 

                by = 0 - intersectionY[count] 

                value = Decimal((x1-x0)/(y1-y0)) 

                if (y1-y0) > 0: 

                    alpha = math.atan(value) 

                    alpha = alpha * 180/math.pi 

                    Alpha.append(alpha) 

                elif (y1-y0) < 0: 

                    alpha = math.atan(value) 

                    alpha = alpha * 180/math.pi 

                    alpha = 180 + alpha 

                    Alpha.append(alpha) 

                #angle between vectors 
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                ab = ax*bx + ay*by 

                absA = math.sqrt(ax**2 + ay**2) 

                absB = math.sqrt(bx**2 + by**2) 

                beta = math.acos(ab/(absA*absB)) 

                beta = beta * 180/math.pi 

                Beta.append(beta) 

                #finding length of the final line 

                m1 = (y[count+1]-y[count])/(x[count+1]-x[count]) 

                b1 = y[count+1]-(m1*x[count+1]) 

                m2 = 1/math.tan((alpha+beta)*math.pi/180) 

                b2 = intersectionY[count]-(m2*intersectionX[count]) 

                fLIX = (b2-b1)/(m1-m2) 

                fLIY = m2*fLIX+b2 

                fLL = math.sqrt((fLIX-intersectionX[count])**2 + (fLIY-

intersectionY[count])**2) 

                finalLineLength.append(fLL) 

                if count+1 in closedEndedFlapSection or count+1 == 

len(intersectionX): 

                    pass 

                else: 

                    #plotting final line 

                    X = intersectionX[count] + 

fLL*math.sin((alpha+beta)*math.pi/180) 

                    Y = intersectionY[count] + 

fLL*math.cos((alpha+beta)*math.pi/180) 

                    if changedfo[count]: 

                        plt.plot([intersectionX[count],X],[intersectionY[count],Y

],'-', color='red') 

                    else: 

                        plt.plot([intersectionX[count],X],[intersectionY[count],Y

],'-', color='blue') 

            #drawing extra valley fold  

            Theta = (360 - Decimal(sumTheta))/2 

            angle = Decimal(SumTheta[len(SumTheta)-1]) + Decimal(Theta) 

            radianTheta = (Decimal(Theta)+Decimal(sumTheta))*Decimal(math.pi/180) 

            length = ft[0] * math.cos(radianTheta) 

            radianAngle = Decimal(angle)*Decimal(math.pi/180) 

            X = math.sin(radianAngle)*length 

            Y = math.cos(radianAngle)*length 

            plt.plot([0, -X], [0, Y], 'r-') 

 

            #Finding length of axis 

            gX = 0 

            gY = 0 

            for count in range(len(x)): 
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                if gX < abs(x[count]): 

                    gX = abs(x[count]) 

                if gY < abs(y[count]): 

                    gY = abs(y[count]) 

                if gY < gX: 

                    greatest = gX 

                else: 

                    greatest = gY 

 

            #controlling axis 

            plt.axis([-greatest, greatest, -greatest, greatest]) 

            plt.gca().set_aspect('equal') 

            plt.xticks(color="white") 

            plt.yticks(color="white") 

 

            count = 0 

            optimize = "Yes" 

            if optimize == "Yes" or optimize == "yes":  

                multiple = Decimal(360)/Decimal(sumTheta) 

                for count in range(len(theta)): 

                    Theta = theta[count] 

                    Theta = Decimal(Theta)*Decimal(multiple) 

                    theta[count] = Theta 

                x = [] 

                y = [] 

                SumTheta = [] 

                sumTheta = 0 

                for count in range(len(theta)): 

                    sumTheta = sumTheta + theta[count] 

                    SumTheta.append(sumTheta) 

                #need the initial line (vertical one in center) 

                x.append(0) 

                y.append(ft[0]) 

                SumTheta[len(SumTheta)-1] = 360 

                count=0 

                for count in range(len(SumTheta)): 

                    angle = SumTheta[count-1] 

                    radian = Decimal(angle)*Decimal(math.pi/180) 

                    fTotal2 = ft[count]  

                    X = math.sin(radian) * fTotal2  

                    Y = math.cos(radian) * fTotal2 

                    x.append(X) 

                    y.append(Y) 

 

                oX = [] 
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                oY = [] 

                oX.append(0) 

                oY.append(ft[0] - fo[0]) 

                fo.append(fo[0]) 

                count=1 

                for count in range(len(SumTheta)): 

                    angle = SumTheta[count-1] 

                    radian = Decimal(angle)*Decimal(math.pi/180) 

                    fOpen2 = ft[count] - fo[count] 

                    X = math.sin(radian)*fOpen2 

                    Y = math.cos(radian)*fOpen2 

                    oX.append(X) 

                    oY.append(Y) 

                plt.figure().clear() 

            else: 

                plt.show() 

                exit() 

 

            #drawing to visualize 

            count=0 

            intersectionX = [] 

            intersectionY= [] 

            for count in range(len(oX)): 

                if count == len(oX)-1: 

                    a1 = y[0] - oY[count] 

                    b1 = oX[count] - x[0] 

                    c1 = a1*oX[count]+b1*oY[count] 

                    a2 = oY[0]-y[count] 

                    b2 = x[count] - oX[0] 

                    c2 = a2*x[count]+b2*y[count] 

                    X = (b2*c1-b1*c2)/(a1*b2-a2*b1) 

                    Y = (a1*c2-a2*c1)/(a1*b2-a2*b1) 

                    intersectionX.append(X) 

                    intersectionY.append(Y) 

                else: 

                    a1 = y[count+1] - oY[count] 

                    b1 = oX[count] - x[count+1] 

                    c1 = a1*oX[count]+b1*oY[count] 

                    a2 = oY[count+1]-y[count] 

                    b2 = x[count] - oX[count+1] 

                    c2 = a2*x[count]+b2*y[count] 

                    X = (b2*c1-b1*c2)/(a1*b2-a2*b1) 

                    Y = (a1*c2-a2*c1)/(a1*b2-a2*b1) 

                    intersectionX.append(X) 

                    intersectionY.append(Y) 
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                if count in closedEndedFlapSection: 

                    pass 

                else: 

                    if count == len(oX)-1: 

                        plt.plot([x[count], oX[0]], [y[count], oY[0]], 'r-', 

linewidth='1') #left to right 

                        plt.plot([oX[count],x[0]], [oY[count],y[0]], 'r-', 

linewidth='1') #right to left 

                        plt.plot([oX[count], X],[oY[count], Y],'-', 

color='black',  linewidth='1',) 

                        plt.plot([X, oX[0]],[Y, oY[0]], '-', color='black', 

linewidth='1') 

                        plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

                    else: 

                        plt.plot([x[count], oX[count+1]], [y[count], 

oY[count+1]], 'r-', linewidth='1') #left to right 

                        plt.plot([oX[count],x[count+1]], [oY[count],y[count+1]], 

'r-', linewidth='1') #right to left 

                        plt.plot([oX[count], X],[oY[count], Y],'-', 

color='black',  linewidth='1',) 

                        plt.plot([X, oX[count+1]],[Y, oY[count+1]], '-', 

color='black', linewidth='1') 

                        plt.plot([0, X], [0, Y], 'r-', linewidth='1') 

                x.append(0) 

                y.append(ft[0]) 

                plt.plot([x[count],0], [y[count],0],'b-') 

                plt.plot(x, y, 'b-') 

                plt.plot([0,0],[0,ft[0]], 'b-') 

 

            #final line calculations 

            count = 0 

            Alpha = [] 

            Beta = [] 

            finalLineLength = [] 

            for count in range(len(intersectionY)): 

                x0 = intersectionX[count] 

                y0 = intersectionY[count] 

                x1 = x[count] 

                y1 = y[count] 

                ax = oX[count] - intersectionX[count] 

                ay = oY[count] - intersectionY[count] 

                bx = 0 - intersectionX[count] 

                by = 0 - intersectionY[count] 

                value = Decimal((x1-x0)/(y1-y0)) 

                if (y1-y0) > 0: 
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                    alpha = math.atan(value) 

                    alpha = alpha * 180/math.pi 

                    Alpha.append(alpha) 

                elif (y1-y0) < 0: 

                    alpha = math.atan(value) 

                    alpha = alpha * 180/math.pi 

                    alpha = 180 + alpha 

                    Alpha.append(alpha) 

                #angle between vectors 

                ab = ax*bx + ay*by 

                absA = math.sqrt(ax**2 + ay**2) 

                absB = math.sqrt(bx**2 + by**2) 

                beta = math.acos(ab/(absA*absB)) 

                beta = beta * 180/math.pi 

                Beta.append(beta) 

                if count == len(x)-1: 

                    #finding length of the final line 

                    m1 = (y[0]-y[count])/(x[0]-x[count]) 

                    b1 = y[0]-(m1*x[0]) 

                    m2 = 1/math.tan((alpha+beta)*math.pi/180) 

                    b2 = intersectionY[count]-(m2*intersectionX[count]) 

                else: 

                    #finding length of the final line 

                    m1 = (y[count+1]-y[count])/(x[count+1]-x[count]) 

                    b1 = y[count+1]-(m1*x[count+1]) 

                    m2 = 1/math.tan((alpha+beta)*math.pi/180) 

                    b2 = intersectionY[count]-(m2*intersectionX[count]) 

                fLIX = (b2-b1)/(m1-m2) 

                fLIY = m2*fLIX+b2 

                fLL = math.sqrt((fLIX-intersectionX[count])**2 + (fLIY-

intersectionY[count])**2) 

                if count in closedEndedFlapSection: 

                    pass 

                else: 

                    #plotting final line 

                    X = intersectionX[count] + 

fLL*math.sin((alpha+beta)*math.pi/180) 

                    Y = intersectionY[count] + 

fLL*math.cos((alpha+beta)*math.pi/180) 

                    if changedfo[count-1]: 

                        plt.plot([intersectionX[count],X],[intersectionY[count],Y

],'-', color='red') 

                    else: 

                        plt.plot([intersectionX[count],X],[intersectionY[count],Y

],'-', color='blue') 
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            plt.plot([0, 0], [0, ft[0]], 'b-') 

             

            ft.pop() 

            fo.pop() 

            fo.pop() 

            #controlling axis 

            plt.axis([-greatest, greatest, -greatest, greatest]) 

            plt.gca().set_aspect('equal') 

            plt.xticks(color="white") 

            plt.yticks(color="white") 

            #plt.show() 

            error_message = "NoError" 

        except ZeroDivisionError: 

            exc_type, exc_obj, exc_tb = sys.exc_info() 

            print(exc_type, exc_tb.tb_lineno) 

            Error_message = exc_type, exc_tb.tb_lineno 

            error_message = str(Error_message) 

            #plt.show() 

        except ValueError: 

            print(traceback.format_exc()) 

            exc_type, exc_obj, exc_tb = sys.exc_info() 

            print(exc_type, exc_tb.tb_lineno) 

            Error_message = exc_type, exc_tb.tb_lineno 

            error_message = str(Error_message) 

            #plt.show() 

        # Append the data to the worksheet 

        worksheet.append([foTotal] + oft + ofo + oc + [error_message]) 

generateRandomValues(repetitions) 

wb.save("ProgramTesting13ErrorLine.xlsx") 
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Appendix 16. Second test on randomly generated crease patterns 

Appendix 16.1 

 

Total number of flaps: 5 

The total lengths of flaps: [6.968573053411594, 4.084843362518074, 9.895733385630354, 

2.6271432969399013, 4.51111905492084] 

The length of open-ended flaps: [4.26374124280005, 1.450761527049666, 9.274753419747833, 

1.3533069581666544, 3.9225258614707204] 

Original connectivity between flaps:  

Final connectivity value: [0.6852592117223886, 1.2834761091022513, 1.2725954253992882, 

1.39678140886816, 1.3543124443666401] 
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Appendix 16.2 

 

Total number of flaps: 6 

The total lengths of flaps: [1.273516338960313, 4.312490873388468, 6.087277894222673, 

9.631853620193693, 1.7480667330405266, 7.324272655279679] 

The length of open-ended flaps: [1.0897591610229087, 2.749995613679151, 

2.633137310708558, 2.4336728200664197, 1.6160249601075463, 5.72995512329334] 

Original connectivity between flaps: 

Final connectivity value: [0.8767199514968809, 1.6886903359406715, 0.9302290256055756, 

0.19204456525703667, 1.1065204038134053, 0.9397929767056392] 
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Appendix 16.3 

 

Total number of flaps: 5 

The total lengths of flaps: [5.582971313180651, 3.4064955586271295, 1.2318008582303626, 

7.973629276127891, 8.600909184600969] 

The length of open-ended flaps: [3.072032640007576, 2.9683713694534095, 

1.2141996890702833, 1.1671697386121278, 6.9071451093363105] 

Original connectivity between flaps: [0.3997683211083244, 0.06453650878503558, 

0.5445513858156292, 0.02602325127049676, 0.8527854205129118] 

Final connectivity value: [0.8530104195128021, 1.3332195407828427, 0.12476654729196729, 

0.4739547336543806, 0.9471091544204192] 
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Appendix 16.4 

 

Total number of flaps: 3 

The total lengths of flaps: [3.464470402135396, 5.553452375610049, 3.512416096115799] 

The length of open-ended flaps: [3.4381955399990076, 5.26293136479214, 

1.2721508625675515] 

Original connectivity between flaps: [0.6638554146832885, 0.5051272102050278, 

0.7040450880657435] 

Final connectivity value: [1.219487049433334, 0.6813117154614303, 0.6077350409712303] 
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Appendix 16.5 

 

Total number of flaps: 4 

The total lengths of flaps: [4.282746436445714, 6.231407611233215, 2.4633665409542767, 

7.530375062881111]   

The length of open-ended flaps: [3.6618404174393886, 1.3742384609195133, 

1.3591048957814738, 6.54779834406157]  

Original connectivity between flaps: [0.3449502721206801, 0.517099409439606, 

0.4999944538069857, 0.08686217507345129] 

Final connectivity value: [0.34166321487220924, 0.3836942455006062, 0.837697574652114, 

1.0896199357364507] 
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Appendix 16.6 

 

Total number of flaps: 6 

The total lengths of flaps: [4.255777963775013, 7.7432943310925575, 5.765953097730162, 

7.820112260613582, 2.6538115670730855, 2.618405710296501] 

The length of open-ended flaps: [3.7204529568503597, 5.2992473782993335, 

3.6251695155373684, 6.2937690822203, 2.1251797302930466, 1.7192978286076213] 

Original connectivity between flaps: [0.26464283222415985, 0.37343277188042057, 

0.33292365424602643, 0.14369435790920182, 0.23190981751183692, 0.28120212259944977] 

Final connectivity value: [1.8032199498953356, 1.6402298812097045, 1.9952423850108727, 

1.4939517506156386, 2.126617078777873, 2.1404917702808905] 
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Appendix 16.7 

 

Total number of flaps: 5 

The total lengths of flaps: [3.4346681076382723, 4.041480600965569, 6.5535865745033215, 

6.580155281748957, 9.746219805828762] 

The length of open-ended flaps: [2.7546904998808497, 4.014203334390521, 

2.8324186671531137, 1.6672885877945705, 9.7084718462198] 

Original connectivity between flaps: [0.21942586571206557, 0.4026466222572944, 

0.22848759772450722, 0.2592118831737529, 0.3043298426522313] 

Final connectivity value: [2.3434490469607763, 1.0923373741793443, 0.33974324513549997, 

1.3117656474140296, 1.8041319130917417] 
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Appendix 16.8 

 

Total number of flaps: 3 

The total lengths of flaps: [2.0115733197759145, 2.9334970226902093, 8.885634531475933] 

The length of open-ended flaps: [1.157124160870537, 1.1357906049293427, 

3.506406130734023] 

Original connectivity between flaps: [0.19726409808079415, 0.24267124446820976, 

0.6705161503239744] 

Final connectivity value: [0.2833785102974669, 0.18965739994772332, 0.21559858772217017] 
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Appendix 16.9 

 

Total number of flaps: 9 

The total lengths of flaps: [1.2110161291068295, 8.454241668979076, 5.613548637679021, 

3.960061983611369, 2.6160255165768724, 3.2727483756622218, 6.868013935955064, 

1.829731902465634, 7.884522775537047] 

The length of open-ended flaps: [1.194117763839045, 7.9168163061062575, 4.075281737727334, 

3.5541048273324183, 1.8115528278541422, 2.3456316659684173, 5.859091569962198, 

1.1408855496745924, 5.389985412314998] 

Original connectivity between flaps: [0.6931094325865687, 0.07552344452186466, 

0.556104143078683, 0.28724202657081843, 0.40548694833724475, 0.49023099649409607, 

0.21707252765655738, 0.27626011550766094, 0.13194257981630897] 

Final connectivity value: [1.4498170028574666, 4.750011850480868, 4.431253545914958, 

4.326882255718954, 3.8947084774234595, 2.8715015027773094, 1.5672701104822206, 

0.9825258838342412, 0.8846402471426738] 
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Appendix 16.10 

 

Total number of flaps: 3 

The total lengths of flaps: [9.829701951935462, 5.655647757017817, 7.189501466866154] 

The length of open-ended flaps: [4.933024079281786, 2.282107117549569, 

5.693972835576422] 

Original connectivity between flaps: [0.22056720804932473, 0.6906013433706388, 

0.06410576782529087] 

Final connectivity value: [0.25486541534639834, 0.709156180765215, 0.4619390035136482] 
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Appendix 17. Third test raw data 
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