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1. Introduction and Research Question  

Not only was I infected by SARS-CoV-2 (Covid-19) three times, as a high school student, there 

were instances where my life seemed to revolve around the coronavirus and the global 

pandemic. The school was closed for months. Online classes replaced physical learning, and I 

could only see my friends through the small laptop screen rather than meeting them in person. 

Moreover, when my family traveled to South Korea during the 2021 summer, we had to stay 

in a strict quarantine for 14 days and receive mandatory vaccine. My personal experience with 

coronavirus and its impact to my upbringing has ever since established a lasting interest in the 

field of epidemiology. Questions like how effective vaccines were in decreasing the rate of 

transmission of coronavirus still permeate my thoughts when I reflect upon the strict 

enforcement of vaccination programs in South Korea. Consequently, when I recently 

encountered a video about the SIR (Susceptible, Infected, and Recovered) model – the most 

widely used model to simulate an epidemic with a set of differential equations – I was inspired 

to apply my mathematical knowledge to model the spread of coronavirus in South Korea. I also 

wanted to use my mathematical model to determine how big of a difference would vaccination 

have had on reducing the spread of the coronavirus infection in the overall population.   

Hence, to explore mathematics behind the spread of coronavirus, this exploration has made the 

following research question: “How can a system of differential equations be used to model 

the coronavirus epidemic in South Korea and the effectiveness of vaccination in reducing 

the rate of transmission?”  

To answer my research question, I aim to achieve the following goals:  

• In the first part of my exploration, I will develop a realistic model for the spread of 

coronavirus in South Korea. This model will account for distinctive characteristics of 

coronavirus, including its incubation period, asymptomatic transmission, asymptomatic 

recovery, and reinfection. To achieve this, I will utilize Euler’s method to find 

numerical solutions to a system of first-order differential equations.  

• In the second part of my exploration, I will quantify the efficacy of vaccination in 

reducing the spread of coronavirus. To achieve this, I will compare the maximum 

number of infected population and the maximum rate of increase in the infected 

population during the successive waves of coronavirus outbreak between populations 

undergoing vaccination and those not undergoing vaccination.  
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2. Background Information and Methodology 

As one of the most densely populated country, South Korea was hit hard during the initial 

spread of SARS-CoV-2 (commonly referred to as coronavirus or Covid-19). Without any 

vaccine to mitigate the spread of the disease, South Korea initially showed an extreme growth 

in the number of infected populations (Jeong, 2020). However, its rigorous vaccination 

program that has started 387 days after the initially confirmed covid case has enabled the 

country to minimize further spread of the virus and bring the epidemic to its halt (Na, 2023) 

(Han-joo, 2021). In total, only 0.1% of South Korea’s infected population has died from covid, 

a tenfold lower mortality rate than the global average of 1% (Worldometer, 2024) 

(Worldometer, 2024). However, would not have coronavirus eventually ‘died out’ as more 

people got infected and developed natural immunity against the virus? How significant was 

vaccination in reducing the number of infected population and decreasing the severity of 

successive waves of coronavirus? Though there are a variety of factors, such as but not limited 

to, socioeconomic and political factors that come into play, this exploration will not consider 

them when modelling the spread of coronavirus in South Korea owing to the sheer complexity 

in coronavirus’s epidemiology.  

Before beginning, the epidemiological model that will be developed in this exploration will be 

grounded upon a set of foundational assumptions. These assumptions and generalizations are 

needed as the spread of coronavirus in reality is far more complex and influenced even by 

decisions made at the individual level:   

1. The entirety of South Korea’s population is susceptible to coronavirus. Everyone, 

regardless of age, gender, health conditions, and lifestyle will have the equal chance of 

being infected by the virus without any prior immunity against the virus. 

2. The South Korea’s population is distributed with equal population density. In reality, 

the transmission rate differs by locations since there is more contacts between 

individuals living in densely populated cities such as Seoul, which contains about 20% 

of the country’s population while covering 0.28% of its landmass, than in rural areas 

(SEOUL SOLUTION, 2023). However, for the sake of simplicity, this investigation 

will assume that South Korea’s population is distributed homogenously. 

3. South Korea’s total population is constant at 50 million throughout the epidemic and 

its vital dynamics – the birth and death rates – will be ignored.  
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4. Coronavirus produces identical effect on all infected individuals. This means that the 

severity and duration of infection, which usually depends on the patient’s age and prior 

health conditions, will be assumed identical. 

5. There are no external measures such as quarantine and hospitalization being performed 

to reduce the spread of coronavirus. No preventative measures other than vaccination 

will be considered in virus transmission to isolate the effectiveness of vaccine.  

6. Lastly, all parameters concerning the spread of coronavirus will remain constant 

throughout the epidemic, such as its contractibility and the duration of the disease, 

unlike in reality where parameters constantly change as the virus mutates.  

 

3. Creating a Model for the Spread of Coronavirus in South Korea 

3.1 The SIR Model 

3.1.1 Introduction to the SIR model 

SIR consists of a system of three differential equations that models an epidemic by considering 

three functions: the susceptible, infected, and recovered population with respect to time. The 

susceptible population, 𝑆(𝑡), represents the fraction of South Korea’s population that can 

contract the disease in respect to time 𝑡. For instance, 𝑆(𝑡) = 0.5 means that 50% of South 

Korea’s population (25 million), is in the susceptible category capable of becoming infected. 

The infected population, 𝐼(𝑡), represents the proportion of South Korea’s population who have 

contracted coronavirus and can spread the disease to individuals in the susceptible group. In 

SIR model, individuals can only leave the infected population by recovering, which is modelled 

by the recovered population 𝑅(𝑡) that represents the fraction of South Korea’s population who 

have recovered. 

The SIR model is defined as the following (Mathematical Association of America, 2024):  

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 
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These systems of differential equations show the relationship between the susceptible (𝑆), 

infected (𝐼), and recovered (𝑅) population during an epidemic based on the rate of change of 

the susceptible population (
𝑑𝑆

𝑑𝑡
), infected population (

𝑑𝐼

𝑑𝑡
), and recovered population (

𝑑𝑅

𝑑𝑡
).  

Since South Korea’s total population is assumed constant, the rate of change of the susceptible 

population 𝑆(𝑡), which is denoted as 𝑆, is dependent on one factor – the number of individuals 

becoming infected every day. For a coronavirus to spread, interaction between the susceptible 

and infected population is necessary. However, not every encounter between a susceptible and 

infected individuals results in transmission. Depending on how easily a virus spreads, which is 

represented by the contractability constant 𝛽, the proportion of interaction between the infected 

and the susceptible population that results in virus transmission varies. For instance, 𝛽 = 0.1 

indicates that an infected person will transmit his/her disease to one in every ten susceptible 

individuals that he/she encounters on average. Consequently, the higher the value of β, the 

faster the disease spreads from the infected to the susceptible. As the contractability constant 

𝛽, the susceptible population, and the infected population are always positive, a minus sign is 

required to indicate how the susceptible population always decreases throughout an epidemic. 

Hence, the rate of change of the susceptible population dependent on the contractibility and the 

amount of interaction between the susceptible and infected population can be expressed as:  

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 

The rate of change of the infected population is dependent on two factors – the number of 

individuals becoming infected and recovering. The number of individuals becoming infected 

every day is equivalent to the number of susceptible that decreases every day, which has been 

defined as 𝛽𝑆𝐼. The decrease in the number of infected individuals, however, depends on how 

many individuals become recovered. Consequently, a new parameter 𝛾 must be introduced to 

represent the proportion of the infected population recovering every day. For instance, 𝛾 = 0.2 

indicates that 20% of the existing infected population will recover every day. Consequently, 

with 𝛾𝐼 representing the proportion of infected that is transferred to the recovered population 

every day, the overall rate of change of the infected population can be expressed as the sum of 

the rate of influx of infected patients from susceptible group (𝛽𝑆𝐼) and the rate of outflux of 

infected patients to the recovered group (−𝛾𝐼): 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 
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Since 𝛾 is related to the speed of recovery, it is also worth noting that 𝛾 is roughly the reciprocal 

of the number of days the infection lasts (Mathematical Association of America, n.d.). 

Consequently, 
1

𝛾
 indicates the duration of the disease, where the lower the value of 𝛾, the longer 

the disease lasts. For 𝛾 = 0.2, the disease would last 5 days.  

Lastly, the rate of change of the recovered population is dependent on only one factor – the 

proportion of the infected population recovering every day, which has been defined as 𝛾𝐼. As 

SIR model assumes that a recovered individual is immune to the virus, the recovered population 

will only increase throughout the epidemic and can be expressed as:  

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 

 

3.1.2 Determining constants β, γ, and 𝒄 

To determine the constants β and γ, there is another epidemiological constant that must be 

defined – the R naught value (𝑐). The R-naught value, otherwise known as the contact number, 

is a parameter for approximating the average number of susceptible individuals that one 

infected person transmits the virus to before recovering. For instance, a R-naught value of 3 

means that one infected person will on average transmit the disease to three susceptible 

individuals before recovering.  

Since 𝛽 represents the contractability – the proportion of contact between the susceptible and 

the infected that results in transmission – and 
1

𝛾
 represents the duration of the disease, the R-

naught value for coronavirus epidemic in South Korea’s susceptible population can be obtained 

by finding the product of contractibility, duration of the disease, and the susceptible population 

as shown in the following equation (Mathematical Association of America, n.d.):  

𝑐 = 𝛽 ×
1

𝛾
× 𝑆 

𝑐 =
𝛽𝑆

𝛾
 

But since we assume that the entire population is susceptible to coronavirus at the start of the 

epidemic except for the initial infected individual that propagates the disease, the fraction of 

South Korea’s population susceptible to the virus at 𝑡 = 0, the onset of the epidemic, is: 
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𝑆(0) =
49,999,999

50,000,000
 

𝑆(0) ≈ 1 

Consequently, the expression for R-naught can be revised as:  

𝑐 =
𝛽 × 1

𝛾
=

𝛽

𝛾
 

Hence, I will first determine the value of 𝛾 using online data about the duration of coronavirus 

infection and derive the value of 𝑐 using the differential equations for the rate of change in the 

susceptible (
𝑑𝑆

𝑑𝑡
) and the infected (

𝑑𝐼

𝑑𝑡
) population. Subsequently, the expression for the R-

naught (𝑐) will be used to obtain the value of 𝛽 as unlike the duration of coronavirus (
1

𝛾
) or 

the R-naught value which can be derived mathematically, the contractability of coronavirus 

cannot be determined directly from literature data as it varies by the size of population. 

According to Centers for Disease Control and Prevention, the duration of coronavirus infection 

(the period during which one is contagious) is approximately 10 days (CDC, 2023).  

1

𝛾
= 10 

𝛾 =
1

10
 

The expression for R-naught (𝑐) can be obtained by manipulating the following differential 

equations (Mathematical Association of America, n.d.): 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 

Since both differential equations represent the susceptible and infected population in respect to 

time,  

𝑑𝐼

𝑑𝑡
×

𝑑𝑡

𝑑𝑆
=

(𝛽𝑆𝐼 − 𝛾𝐼)

−𝛽𝑆𝐼
 

𝑑𝐼

𝑑𝑆
= −1 +

𝛾

𝛽𝑆
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Since 𝑐 =
𝛽

𝛾
,  substituting 

𝛾

𝛽
 with 

1

𝑐
 gives:  

𝑑𝐼

𝑑𝑆
= −1 +

1

𝑐𝑆
 

Now, I will integrate both sides with respect to 𝑆 in order to obtain an expression for the 

infected population 𝐼(𝑡): 

 

∫
𝑑𝐼

𝑑𝑆
𝑑𝑆 = ∫(−1 +

1

𝑐𝑆
) 𝑑𝑆 

𝐼 = − ∫ 1  𝑑𝑆 +
1

𝑐
∫

1

𝑆
 𝑑𝑆 

𝐼(𝑡) = −𝑆 +
1

𝑐
ln 𝑆 + 𝑘 

 where 𝑘 is the constant of integration. 

At the onset of epidemic when 𝑡 = 0, the proportion of South Korea’s population susceptible 

and infected to coronavirus is:  

𝑆(0) =
49,999,99

50,000,000
 

𝑆(0) ≈ 1 

𝐼(0) =
1

50,000,000
 

𝐼(0) ≈ 0 

Therefore, these initial conditions can be used to determine the constant of integration: 

𝐼(0) = −𝑆(0) +
1

𝑐
ln 𝑆(0) + 𝑘 

0 = −1 +
1

𝑐
× 0 + 𝑘 

0 = −1 + 𝑘 

𝑘 = 1 

If lim
𝑡→∞

𝐼(𝑡) represents the proportion of South Korea’s population infected at the end of the 

epidemic, lim
𝑡→∞

𝐼(𝑡) = 0 since everyone remaining after an epidemic will either belong to the 
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susceptible or the recovered population. We can use this terminal condition to obtain another 

expression for the constant of integration:  

lim
𝑡→∞

𝐼(𝑡) = −lim
𝑡→∞

𝑆(𝑡) +
1

𝑐
lim
𝑡→∞

ln 𝑆(𝑡) + 𝑘 

0 = −𝑆∞ +
1

𝑐
ln 𝑆∞ + 𝑘 

𝑘 = 𝑆∞ −
1

𝑐
ln 𝑆∞ 

where 𝑆∞ denotes the proportion of South Korea’s population susceptible at the end of the 

epidemic.  

By setting the two expressions for the integration constant determined from the initial and 

terminal conditions as equal, we can obtain the following expression for the R-naught value: 

𝑆∞ −
1

𝑐
ln 𝑆∞ = 1 

1

𝑐
ln 𝑆∞ = 𝑆∞ − 1 

1

𝑐
=

𝑆∞ − 1

ln 𝑆∞
 

𝑐 =
ln 𝑆∞

𝑆∞ − 1
 

Since this expression is independent of time 𝑡, we can assume that the R-naught value is 

constant throughout the epidemic and only dependent on the proportion of South Korea’s 

population remaining susceptible at the end of the epidemic – those that have not been infected 

by coronavirus at all.  

Of 50,000,000 people living in South Korea, 34,571,873 of them have been infected by 

coronavirus. Thus, the proportion of South Korea’s population remaining in the susceptible 

category at the end of the epidemic is:  

𝑆∞ =
50,000,000 − 34,571,873

50,000,000
= 0.30856 

Consequently, the R-naught value for coronavirus pandemic in South Korea is:  

𝑐 =
ln 0.30856

0.30856 − 1
= 1.7005 
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Hence, the contractability of the coronavirus in South Korea is: 

𝛽 = 𝑐𝛾 = 1.7005 ×
1

10
= 0.17005 

𝛽 ≈ 0.170 

From these results, it can be concluded that the SIR model predicts every infected patient to 

transmit coronavirus to approximately 1.70 susceptible individuals before becoming recovered. 

Furthermore, the contractibility of 0.170 indicates that 17.0% of interactions that infected 

individuals make with susceptible individuals will result in transmission. Unlike my initial 

expectation that had predicted coronavirus to spread more rapidly, it was surprising to find that 

the R-naught value for coronavirus predicted by the SIR model was actually lower than a 

common flu which has a R-naught value between 2 to 3 (Shabir, 2021).  

 

3.1.3 Graphing the SIR model using Euler’s method 

Using the value for 𝛽 and 𝛾 determined, the system of differential equations in the SIR model 

below can produce a rudimentary model for the spread of coronavirus in South Korea.  

𝑑𝑆

𝑑𝑡
= −0.170𝑆𝐼 

𝑑𝐼

𝑑𝑡
= 0.170𝑆𝐼 − 0.1𝐼 

𝑑𝑅

𝑑𝑡
= 0.1𝐼 

Though it is best to find analytical solutions that expresses the 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) as functions 

with respect to time 𝑡, solving a system of differential equations analytically requires much 

more complex math outside of the IB syllabus. Hence, I have decided to rather use the Euler’s 

method to find numerical solutions that approximate the functions for the susceptible, infected, 

and recovered populations throughout the coronavirus epidemic.   

By denoting the susceptible population at 𝑡 = 𝑛, 𝑆(𝑛), as 𝑆𝑛 where 𝑛 represents the number of 

days after the onset of the epidemic,  

𝑆𝑛+1 = 𝑆𝑛 + (𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑎 𝑑𝑎𝑦) 

= 𝑆𝑛 +
𝑑𝑆

𝑑𝑡
× 𝑑𝑡 = 𝑆𝑛 + (−0.170𝑆𝑛𝐼𝑛)𝑑𝑡 
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Thus, this recursive relationship between the susceptible population at 𝑡 = 𝑛 and 𝑡 = 𝑛 + 1 

(step size of one day) indicates that we can predict the future susceptible population using data 

from the present susceptible population and the rate of change of the susceptible population 

over a day. Hence, the with the initial conditions for the susceptible, infected, and recovered 

populations at 𝑡 = 0, the Euler’s method allows us to extrapolate the changes of each 

population category over the course of the epidemic.  

The same method has been used to obtain the recursive formula for 𝐼𝑛+1 and 𝑅𝑛+1:  

𝐼𝑛+1 = 𝐼𝑛 + (0.170𝑆𝑛𝐼𝑛 − 0.1𝐼𝑛)𝑑𝑡 

𝑅𝑛+1 = 𝑅𝑛 + (0.1𝐼𝑛)𝑑𝑡 

As there is one initially infected individual in South Korea’s population with everyone else 

belonging in the susceptible category,  

𝑆(0) =
49,999,999

50,000,000
, 𝐼(0) =

1

50,000,000
, 𝑅(0) = 0, 𝑑𝑡 = 1 

Using these initial conditions, the numerical solutions and the representative curves for the 

susceptible, infected, and recovered populations have been obtained in Excel:  

 

Figure 1 Using excel spreadsheet to perform Euler's method in extrapolating the SIR model up to 500 days after the onset of 

epidemic. 
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Figure 2 Modelling the spread of the coronavirus in South Korea using SIR.  

From the SIR curves modelled in figure 2, it can be noticed that the increase in the infected 

population results in a rapid decrease in the susceptible population. As one-tenth of the infected 

population recovers every day, the recovered population increases alongside the rise in the 

infected population. Since the maximum of 𝐼(𝑡) occurs when the slope of the tangent for 𝐼(𝑡) 

is zero,   

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 = 0 

by substituting  

𝛽𝑆𝐼 = −
𝑑𝑆

𝑑𝑡
 and 𝛾𝐼 =

𝑑𝑅

𝑑𝑡
 

it is clear that the maximum infected population occurs when: 

−
𝑑𝑆

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
 

the point at which the rate of decrease of the susceptible population equals the rate of increase 

of the recovered population.  

The curves for susceptible, infected, and recovered population plateau from around day 400, 

which indicates that the coronavirus outbreak lasts 400 days. This, of course, is not an accurate 
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model of how coronavirus has spread in South Korea, both in terms of the shape of the curves 

and the duration of the outbreak. Furthermore, simplifying the coronavirus epidemic into 

individuals who can get infected, are currently infected, and have recovered fails to represent 

details that characterize coronavirus. Hence, I will develop this SIR model to represent the 

realistic spread of the virus involving the incubation period, asymptomatic transmission, 

asymptomatic recovery, and reinfection by incorporating more terms into the system of 

differential equations in the upcoming sections of the exploration. 

 

3.2 The SEIR model 

3.2.1 Introduction to the SEIR model 

When you are infected by coronavirus, you do not immediately express the symptoms. For 

days, you are in an “exposed” state where the virus remains in its incubation period. As the 

SIR the model fails to distinguish individuals that are sick (infected) from those who have just 

been exposed, as the first step in tailoring the epidemiological model to coronavirus, I have 

added the exposed category 𝐸(𝑡), which represents the proportion of South Korea’s population 

that are exposed to coronavirus but do not experience its symptoms yet. The system of 

differential equations in the SEIR model is presented below:  

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛿𝐸 

𝑑𝐼

𝑑𝑡
= 𝛿𝐸 − 𝛾𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 

The SEIR model shows that when individuals from the susceptible population are infected by 

people in the infected category, they are first transferred into the exposed population during 

which the coronavirus is at its dormancy. This can be seen from how the term −𝛽𝑆𝐼 that 

represents the decrease in the susceptible population leads to the increase in the exposed 

population by 𝛽𝑆𝐼.  
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The proportion of coronavirus in the exposed population that breaks out of its incubation period 

every day is denoted by the constant 𝛿. For instance, 𝛿 = 0.2 indicates that 20% of the exposed 

individuals become contagious and sick every day, being transferred from the exposed to the 

infected category. Like how the reciprocal of the contractibility (𝛽) indicated the duration of 

the disease, the reciprocal of 𝛿 represents the duration of the incubation period (
1

𝛿
). 

Consequently, with 𝛿𝐸 representing the proportion of the exposed population that is transferred 

to the infected category every day, the overall rate of change of the exposed population can be 

expressed as the sum of the rate of influx of exposed individuals from the susceptible 

population (𝛽𝑆𝐼) and the rate of outflux of exposed individuals to the infected category (−𝛿𝐸):  

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛿𝐸 

 

3.2.2 Further development of the SEIR model  

Another unique characteristic of coronavirus is that even the exposed individuals undergoing 

the incubation period can transmit the virus to the susceptible. This characteristic is called 

asymptomatic transmission, represented by the term 𝜀𝑆𝐸 where 𝜀 denotes the transmission 

constant that indicates the proportion of the interaction between the susceptible and the exposed 

population that results in transmission (same principle as the contractibility constant 𝛽). 

Consequently, the rate of change in the susceptible and the exposed population is also 

dependent on the interaction between the two groups and the transmission constant 𝜀, 

represented by −𝜀𝑆𝐸 and +𝜀𝑆𝐸 in 
𝑑𝑆

𝑑𝑡
 and 

𝑑𝐸

𝑑𝑡
, respectively.  

Furthermore, it is also seen in coronavirus infection that a proportion of individuals in the 

exposed category with a strong immune system overcomes the disease without experiencing 

the symptoms, recovering without undergoing the infected stage. This direct transfer from the 

exposed to recovered population is called asymptomatic recovery, represented by −𝜇𝐸 and 

+𝜇𝐸 in 
𝑑𝐸

𝑑𝑡
 and 

𝑑𝑅

𝑑𝑡
, respectively, where the constant 𝜇 denotes the proportion of exposed 

individuals recovering without becoming infected.  

Such tailored SEIR model can be expressed by a system of differential equations presented 

below: 
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𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 − 𝜀𝑆𝐸 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 + 𝜀𝑆𝐸 − 𝛿𝐸 − 𝜇𝐸 

𝑑𝐼

𝑑𝑡
= 𝛿𝐸 − 𝛾𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 + 𝜇𝐸 

 

3.3 The SEIR+SRS model  

3.3.1 Introduction to the SEIR+SRS model 

The last step in advancing the model for the spread of coronavirus in South Korea is to 

incorporate the concept of reinfection. Reinfection is the most important feature of coronavirus 

that distinguishes it from other viruses where even the individuals who have recovered from 

the disease once can become susceptible to coronavirus again. As there is no permanent 

immunity against the coronavirus, the SEIR model must demonstrate how some people in the 

recovered category are transferred back to the susceptible category over time. I decided to call 

this transfer from the recovered to susceptible population as the SRS cycle since a susceptible 

individual who is infected and recovered from the coronavirus can be susceptible and become 

exposed, and thus infected again.  

The transfer from the recovered to susceptible category is represented by 𝜔𝑅, where 𝜔 denotes 

the proportion of the recovered population becoming susceptible again. Consequently, the 

susceptible population increases while the recovered population decreases by 𝜔𝑅 every day, 

which is illustrated by the term +𝜔𝑅 and −𝜔𝑅 within 
𝑑𝑆

𝑑𝑡
 and 

𝑑𝑅

𝑑𝑡
, respectively.  

The system of differential equations presented below shows a more realistic epidemiological 

model that I have created to model the coronavirus epidemic in South Korea:  
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𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 − 𝜀𝑆𝐸 + 𝜔𝑅 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 + 𝜀𝑆𝐸 − 𝛿𝐸 − 𝜇𝐸 

𝑑𝐼

𝑑𝑡
= 𝛿𝐸 − 𝛾𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 + 𝜇𝐸 − 𝜔𝑅 

The recovered population within the SEIR+SRS model does not discriminate between those 

who survived or died due to coronavirus. However, I found it unnecessary to create another 

differential equation involving 𝐷(𝑡) to model the proportion of South Korea’s population that 

has died since coronavirus is a relatively mild disease with a low mortality rate especially in 

developed countries like South Korea. 

 

3.3.2 Determining the constants 𝜹, 𝜺, 𝝁, 𝒂𝒏𝒅 𝝎 

As previously determined from the SIR model, 𝛽 = 0.170 and 𝛾 = 0.1.  

As the mean incubation period of coronavirus is 6.5 days according to Centers for Disease 

control and Prevention, 
1

𝛿
= 6.5, meaning that 𝛿 = 0.15384 ≈ 0.154 (CDC, 2023). 

Though there is not much coughing or sneezing when coronavirus is in its dormancy, the 

incubation period makes a significant contribution to the asymptomatic transmission since the 

exposed individuals will continue to interact with the susceptible population without realizing 

that one has coronavirus. Thus, I will assume the asymptomatic transmission constant 𝜀 to be 

equal to the contractibility constant 𝛽 since the exposed population will interact more with the 

susceptible population than the infected population, which offsets its reduced transmissibility 

due to the virus being at its dormant state:  

𝜀 = 0.170 
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Using South Korea’s demographic 

distribution, I will assume that 50% 

of people between the age of 15 to 

24 – the age where individuals are 

most physically active – to have the 

most powerful immune system to 

undergo asymptomatic recovery. 

Consequently, even if they have 

been transmitted, they are 

transferred from the exposed to 

recovered category without 

experiencing the severe symptoms which the 

infected population experiences. Hence, the proportion of the exposed population undergoing 

asymptomatic recovery is:  

𝜇 =
2.3 + 2.1 + 2.9 + 2.7

100
× 50% = 5% = 0.05 

Finally, literature study indicates that the reinfection rate of coronavirus in South Korea was 

0.3% (Jang, 2022). This means that approximately 0.3% of the recovered population enters the 

susceptible population again every day, resulting in 𝜔 = 0.003.  

 

3.3.3 Graphing the SEIRD+SRS model using the Euler’s method 

𝑑𝑆

𝑑𝑡
= −0.170𝑆𝐼 − 0.170𝑆𝐸 + 0.003𝑅 

𝑑𝐸

𝑑𝑡
= 0.170𝑆𝐼 + 0.170𝑆𝐸 − 0.154𝐸 − 0.05𝐸 

𝑑𝐼

𝑑𝑡
= 0.154𝐸 − 0.1𝐼 

𝑑𝑅

𝑑𝑡
= 0.1𝐼 + 0.05𝐸 − 0.003𝑅 

With a system of differential equations shown above, the same Euler’s method presented in 

3.1.3 has been used to obtain the susceptible, exposed, infected, and recovered population 

Figure 3 The demographic pyramid of South Korea 
(Population Pyramid, 2022) 
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curves, approximating the analytical solutions to the SEIR+SRS model. Hence, the recursive 

formula for 𝑆𝑛+1, 𝐸𝑛+1, 𝐼𝑛+1, and 𝑅𝑛+1 are:   

𝑆𝑛+1 = 𝑆𝑛 + (−0.170𝑆𝑛𝐼𝑛 − 0.170𝑆𝑛𝐸𝑛 + 0.003𝑅𝑛)𝑑𝑡 

𝐸𝑛+1 = 𝐸𝑛 + (0.170𝑆𝑛𝐼𝑛 + 0.170𝑆𝑛𝐸𝑛 − 0.154𝐸𝑛 − 0.05𝐸𝑛)𝑑𝑡 

𝐼𝑛+1 = 𝐼𝑛 + (0.154𝐸𝑛 − 0.1𝐼𝑛)𝑑𝑡 

𝑅𝑛+1 = 𝑅𝑛 + (0.1𝐼𝑛 + 0.05𝐸𝑛 − 0.003𝑅𝑛)𝑑𝑡 

 

The initial conditions for 𝑡 = 0 are:   

𝑆(0) =
49,999,999

50,000,000
, 𝐸(0) =

1

50,000,000
, 𝐼(0) = 0, 𝑅(0) = 0, 𝑑𝑡 = 1 

Using these data, the representative curves for the susceptible, exposed, infected, and recovered 

populations have been obtained in Excel up to day 1457 as it has been 1457 days since 20th of 

January 2020 – the onset of coronavirus epidemic in South Korea – to 16th of January 2024 – 

the day when this calculation was performed:  

 

Figure 4 Using excel spreadsheet to perform Euler's method in extrapolating the SEIRD+SRS model. The table shows up to 

the day 29 but the values until day 1457 have been extrapolated.  



20 
 

 

3.3.4 Reflecting on SEIR+SRS in modelling the spread of coronavirus in South Korea 

 

Figure 5 Modelling the spread of the coronavirus in South Korea using the SEIR+SRS model. 

 

Figure 6 The close-up visualization of the function 𝐼(𝑡) modelled using the Euler’s method from the SEIR+SRS model.  
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The 𝐼(𝑡) curve modelled by SEIR+SRS illustrates some distinct differences compared to the 

infected curve of SIR model (figure 2). Compared to the SIR model, there are four “waves” of 

infection due to the reinfection rate of 0.003. As 0.3% of the recovered population is transferred 

into the susceptible population, upon reaching its peak at the end of each outbreak, the 

recovered population begins to fall since there is no more infected population to become 

recovered. Consequently, the susceptible population rises again as shown in figure 5. When 

sufficient proportion of South Korea’s population becomes susceptible to coronavirus again, 

the exposed and infected populations increase, initiating the second wave of outbreak. Hence, 

the element of reinfection establishes the oscillatory relationship between the susceptible and 

recovered populations, allows the coronavirus to propagate once more among the susceptible 

population and cause successive waves of coronavirus outbreaks.  

Also, it can be noticed that the successive wave of infection becomes milder in its magnitude. 

In fact, the proportion the exposed and infected population does not rise as rapidly as they did 

in the preceding outbreaks (figure 5 and 6). This can be explained using the fact that there are 

less susceptible individuals available to be transmitted after every wave of outbreak. Compared 

to the onset of epidemic when the entire population was susceptible, the proportion of South 

Korea’s population susceptible at day 525, 883, and 1242 – the start of the second, third, and 

fourth wave of outbreak when the susceptible population starts to decline – is 0.615, 0.521, and 

0.489 according to figure 5. As the increase in the exposed population is dependent on 0.170𝑆𝐼 

and 0.170𝑆𝐸, terms that involve the susceptible population 𝑆(𝑡), when there is less susceptible 

population to begin with, there are less individuals available to become exposed to coronavirus. 

Consequently, there are less people infected since the term responsible for the rise in the 

infected population, 0.154𝐸, also decreases when the exposed population decreases.  
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Figure 7 A graph recording the real-life data of the infected population throughout coronavirus epidemic in South Korea. 

Unlike how I have the proportion of South Korea’s population as the y-axis, this graph shows the number of individuals on 

the y-axis instead (Worldometer, 2024).  

When the 𝐼(𝑡) curve of the SEIR+SRS model (figure 6) was compared to the real-life data that 

records the number of infected individuals throughout the coronavirus epidemic (figure 7), it 

was shocking to find that the SEIRD+SRS model manages to predict the most important 

features of how coronavirus has spread in South Korea. Not only did coronavirus epidemic in 

South Korea consisted of four successive outbreaks (represented by four peaks in the figure 7) 

as predicted by the SEIR+SRS model, but my model also managed to predict how the 

successive waves of outbreak will decrease in their magnitude with less people becoming 

infected.  

Furthermore, the SEIR+SRS model predicts 0.1220, 0.03014, 0.01665, and 0.01317 as the 

maximum proportion of South Korea’s population infected at each consecutive outbreak, 

which corresponds to 6.10 million, 1.51 million, 0.833 million, and 0.659 million individuals, 

respectively. Considering how the real-life infected curve indicates the maximum number of 

infected individuals to be 6.63 million, 2.20 million, 1.22 million, and 0.868 million in the 

corresponding outbreaks, it can be concluded that though not completely accurate, the 

SEIR+SRS model can produce a sufficiently realistic prediction of the number of infected 

population throughout the coronavirus epidemic in South Korea.  

However, there are areas where the SEIR+SRS model fall short of. For instance, the 𝐼(𝑡) curve 

of the SEIR-SRS model fails to accurately model features such as the time interval between 
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successive wave of outbreak or the duration of individual outbreaks. But it must be noted that 

even the SEIR+SRS model is an extremely simplified model grounded upon numerous initial 

assumptions like South Korea’s homogenous population distribution and assumptions I have 

made in determining the parameters for my differential equations. Thus, it is inevitable that 

there are some differences between my model and the actual spread of coronavirus.  

Despite the temporal differences of when individual outbreaks have occurred, I believe that 

SEIR+SRS model is far more successful in modeling the spread of coronavirus in South Korea 

than the initial SIR model as it entails key characteristics of coronavirus like dormancy, 

asymptomatic transmission, asymptomatic recovery, and reinfection. Through the oscillatory 

(periodic) relationship between the susceptible and recovered population, SEIR+SRS models 

the infected curve that resembles how the infected population has changed in reality. Hence, 

its strength in correctly predicting the decreasing severity of four successive outbreaks and 

sufficiently approximating the number of infected individuals at the peak of each outbreak 

allows me to conclude that the SEIR+SRS a realistic model in representing the spread of 

coronavirus in South Korea. 

 

4. Determining the Effectiveness of Vaccination in Reducing the 

Spread of Coronavirus 

4.1 The SEIR+SRS Model with Vaccination 

4.1.1 The Significance of Vaccination in SEIR+SRS Model 

In the context of epidemiological model, vaccination means transfer from the susceptible to 

recovered population, becoming immune to the disease without becoming exposed to it. As 

with the case of coronavirus, however, even the recovered population with immunity can 

contract the disease again. Still, as the reinfection rate (𝜔) is much lower than the 

contractability constant for the interaction between the susceptible-infected (𝛽) and 

susceptible-exposed (𝜀) populations, we can hypothesize that the transfer of the susceptible 

population to recovered category through vaccination will ultimately decrease the number 

individuals becoming infected by coronavirus. If vaccination had no pertinent outcome, why 

would South Korea have had enforced a strict vaccination program to combat the epidemic to 

begin with? But a question remains: how effective (quantitatively) was vaccination in reducing 

the spread of coronavirus?  
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South Korea began distributing the coronavirus vaccine 386 days after the onset of epidemic. 

If we assume that 50,000 susceptible individuals were vaccinated every day since the arrival 

of vaccine, 
50,000

50,000,000
= 0.001 is the proportion of South Korea’s population transferred from 

the susceptible to recovered population every day, irrespective of the time and changes of other 

population categories. Hence, the element of vaccination can be integrated into the SEIR+SRS 

model by transferring 0.1% of South Korea’s population in the susceptible category to the 

recovered category every day.  

To avoid confusions, a small dot will be placed on top when referring to the population curves 

that model SEIR+SRS with vaccination. The system of differential equations modelling the 

spread of coronavirus in South Korea’s population undergoing vaccination is presented below:   

𝑑𝑆°

𝑑𝑡
= −0.170𝑆°𝐼° − 0.170𝑆°𝐸° + 0.003𝑅° − 0.001 

𝑑𝐸°

𝑑𝑡
= 0.170𝑆°𝐼° + 0.170𝑆°𝐸° − 0.154𝐸° − 0.05𝐸° 

𝑑𝐼°

𝑑𝑡
= 0.154𝐸° − 0.1𝐼° 

𝑑𝑅°

𝑑𝑡
= 0.1𝐼° + 0.05𝐸° − 0.003𝑅° + 0.001 

 

4.1.2 Graphing the SEIR+SRS model with vaccination using the Euler’s method 

The same recursive equations presented in 3.3.3 were used to obtain the representative curves 

for the susceptible, exposed, infected, and recovered population without vaccination until      

𝑡 = 386. From 𝑡 = 387, the recursive equations presented below with the ‘vaccination term’ 

(−0.001 and +0.001) were used to obtain the representative curves for the susceptible, 

exposed, infected, and recovered population up until 𝑡 = 1457:   

𝑆𝑛+1
° = 𝑆𝑛

° + (−0.170𝑆𝑛
° 𝐼𝑛

° − 0.170𝑆𝑛
° 𝐸𝑛

° + 0.003𝑅𝑛
° − 0.001)𝑑𝑡 

𝐸𝑛+1
° = 𝐸𝑛

° + (0.170𝑆𝑛
° 𝐼𝑛

° + 0.170𝑆𝑛
° 𝐸𝑛

° − 0.154𝐸𝑛
° − 0.05𝐸𝑛

° )𝑑𝑡 

𝐼𝑛+1
° = 𝐼𝑛

° + (0.154𝐸𝑛
° − 0.1𝐼𝑛

° )𝑑𝑡 

𝑅𝑛+1
° = 𝑅𝑛

° + (0.1𝐼𝑛
° + 0.05𝐸𝑛

° − 0.003𝑅𝑛
° + 0.001)𝑑𝑡 
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4.1.3 Reflecting on SEIR+SRS with vaccination in modelling the spread of coronavirus in South 

Korea 

 

Figure 8 Modelling the spread of the coronavirus in South Korea using the numerical solutions to SEIRD+SRS model with 

vaccination. 

 

Figure 9 The close-up visualization of the function 𝐼°(𝑡) modelled using the Euler’s method from the SEIR+SRS model with 

vaccination.  
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Since vaccine is administered from 𝑡 = 387, the infected population is same between the South 

Korea’s population undergoing vaccination and those that does not undergo vaccination during 

the initial outbreak (from now on, I will refer to South Korea’s population undergoing 

vaccination as ‘vaccinated population’ and South Korea’s population that does not undergo 

vaccination as ‘non-vaccinated population’ interchangeably).  

Though the SEIR+SRS model with vaccination predicts wrongly by indicating how there will 

not be a fourth outbreak (there are only three peaks corresponding to three outbreaks as 

illustrated in figure 9 compared to how there are four peaks in the real-life data shown in figure 

7), the model demonstrates how vaccination significantly reduces the magnitude of the second 

and third outbreaks. The SEIR+SRS model without vaccination predicted 0.03014   (𝑡 = 614) 

and 0.01665 (𝑡 = 982) as the peaks for South Korea’s infected population at the second and 

third outbreak, corresponding to 1.51 million and 0.833 million infected individuals, 

respectively. On the contrary, the SEIR+SRS model with vaccination predicts 0.008320 (𝑡 =

733) and 0.005267 (𝑡 = 1335) as the peaks for South Korea’s infected population at the 

second and third outbreak, corresponding to 0.416 million and 0.263 million infected 

individuals, respectively. This demonstrates that vaccination decreases the maximum number 

of infected individuals at the second and third outbreaks by 72.5% and 68.4%, respectively.  

 

4.2 Finding the Derivative of 𝑰(𝒕) and 𝑰°(𝒕) 

Though data from Euler approximation allows comparison of the maximum infected 

population at each consecutive outbreak between vaccinated and unvaccinated population, I 

cannot compare their maximum rate of increase of the infected population which requires 

differentiating 𝐼(𝑡) and 𝐼°(𝑡) functions which I don’t have.  

Since I could not solve the system of differential equations analytically, I have initially tried to 

model the 𝐼(𝑡) and 𝐼°(𝑡) by attempting to create functions that best fits the infected curves 

modelled with the Euler’s method. During the modelling process, however, I realized a much 

more effective alternative to obtain the derivative of 𝐼(𝑡) and 𝐼°(𝑡) – using the values 

extrapolated by Euler’s method to approximate the slope of the tangent for 𝐼(𝑡) and 𝐼°(𝑡) at 

every point.   

By definition, the derivative of a function 𝑓(𝑥) can be expressed as: 
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𝑓′(𝑥) = lim
∆𝑥→0

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
 

 

Consequently, the derivative of the function 𝐼(𝑡) can be obtained by: 

𝐼′(𝑡) = lim
∆𝑡→0

𝐼(𝑡 + ∆𝑡) − 𝐼(𝑡)

∆𝑡
 

Since 𝐼′(𝑡) is collection of slopes of the tangent at every point in 𝐼(𝑡) when ∆𝑡 → 0, to obtain 

the “correct” derivative (continuous derivative) of 𝐼(𝑡), the corresponding value for 𝐼(𝑡) must 

exist for every value of 𝑡 ∈ ℝ.  

However, it is unrealistic to monitor the change in infected population for every real value of 

𝑡. In fact, the population of the infected is recorded and updated every day in reality, like how 

this exploration has performed the Euler’s approximation with 𝑑𝑡 = 1. Though the derivative 

of 𝐼(𝑡) becomes more accurate when the time interval ∆𝑡 between two measurements becomes 

smaller, when applying mathematics to model a realistic situation like the spread of 

coronavirus, it may be sufficient enough to approximate 𝐼′(𝑡) as a discrete derivative by 

connecting the slope of the tangent for 𝐼(𝑡) at every value of 𝑡 ∈ ℕ where ∆𝑡 = 1. Since the 

slope of the tangent for 𝐼(𝑡) represents the rate of change in the infected population at day 𝑡, 

𝐼′(𝑡) =
𝐼(𝑡) − 𝐼(𝑡 − 1)

𝑡 − (𝑡 − 1)
 

𝐼′(𝑡) =
𝐼(𝑡) − 𝐼(𝑡 − 1)

1
 

𝐼′(𝑡) = 𝐼(𝑡) − 𝐼(𝑡 − 1) 

 Hence, the slope of the tangent for 𝐼(𝑡) – rate of change in the infected population – can be 

calculated by finding the difference between the infected population at day 𝑡 and day 𝑡 − 1, 

which is already obtained up to 𝑡 = 1457 from Euler’s approximation performed previously!  

By approximating 𝐼′(𝑡) and [𝐼°(𝑡)]′ by calculating 𝐼(𝑡) − 𝐼(𝑡 − 1) and 𝐼°(𝑡) − 𝐼°(𝑡 − 1) using 

Excel, the following two curves modelling the daily change in the infected population with and 

without vaccination have been obtained:  
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Figure 10 The change in daily infected population modelled by SEIR+SRS model without vaccination.  

 

Figure 11 The change in daily infected population modelled by SEIR+SRS model with vaccination.  
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4.3 Comparing the rate of increase in the infected populations in SEIR+SRS model with 

vaccination and without vaccination 

Table 1 Comparing the infected population and the rate of change in the infected population without and with vaccination 

modelled by SEIR+SRS model.  

Spread of coronavirus in South Korea’s 

population not undergoing vaccination 

Spread of coronavirus in South Korea’s 

population undergoing vaccination 

  

  

 

It is evident that the curves modelling the rate of change in the daily infected populations are 

respective derivatives for the curves modelling the infected population since they illustrate 

slopes of tangent in 𝐼(𝑡) and 𝐼°(𝑡). For instance, considering how the maximum infected 

population during the first outbreak occurs at 𝑡 = 193 for both vaccinated and non-vaccinated 

populations, it makes sense that the rate of change in daily infected population is zero at           

𝑡 = 193 since the slope of the tangent for 𝐼(𝑡) and 𝐼°(𝑡) at 𝑡 = 193 is zero. Also, the maximum 

rate of increase in the infected population during the first outbreak for the vaccinated and non-

vaccinated population corresponds to the maximum point on the curves modelling the rate of 
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change in the daily infected population, occurring at day 177 where                                  

0.004019 × 100% = 0.4019% of South Korea is predicted to get infected over the day. This 

indicates that the slope of the tangent for 𝐼(𝑡) and 𝐼°(𝑡) is steepest at 𝑡 = 177, which tells when 

the infected population was rising the fastest – when the first outbreak was most out of control. 

Hence, the numerical approximation of the discrete derivate for 𝐼(𝑡) and 𝐼°(𝑡) using the data 

extrapolated from the Euler’s method produces an accurate 𝐼′(𝑡) and [𝐼°(𝑡)]′ curves. 

The second local maximum points for 𝐼′(𝑡) and [𝐼°(𝑡)]′ are (574, 0.0003864) and 

(650, 0.00004904), which indicates that at the peak of the second wave of coronavirus 

outbreak where the slope of the tangent for 𝐼(𝑡) and 𝐼°(𝑡) are at their maximum, 0.03864% of 

South Korea’s population is predicted to become infected without vaccination in contrast to 

0.004904% if South Korea’s population had been undertaking vaccination since 𝑡 = 387. This 

shows that the rate of individuals becoming infected at the peak of secondary outbreak is 

expected to decrease by 87.3% with vaccination.  

As the third local maximum points for 𝐼′(𝑡) and [𝐼°(𝑡)]′ are (915, 0.0001012) and 

(1202, 0.00001321), when the same comparison is undertaken for the third outbreak, it can 

be predicted that the vaccination decreases the rate of individuals becoming infected at the peak 

of the third outbreak by 86.9%.  

Hence, it can be concluded that vaccination is extremely effective in reducing the spread of 

coronavirus in South Korea since according to the 𝐼′(𝑡) and [𝐼°(𝑡)]′ curves derived from the 

𝐼(𝑡) and 𝐼°(𝑡) curves from my SEIR+SRS model, since vaccination not only decreases the 

number of maximum infected population at every outbreak but also significantly reduces the 

maximum rate of increase in the infected population for the second and third outbreaks.  

 

5. Conclusion  

In this exploration, I have investigated how a system of differential equations can be used to 

model the coronavirus outbreak in South Korea and the effectiveness of vaccination in reducing 

the rate of transmission.  

In the first part of the exploration (from 3.1.1 to 3.3.4), I have attempted to use a system of 

differential equations to create a realistic model for the spread of coronavirus in South Korea 

from the onset of the epidemic up until the present day by finding numerical solutions to the 
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differential equations with the Euler’s method. Though SIR model has its strength as a 

generally applicable epidemiological model in simulating the spread of a disease, I realized 

that the simple interaction between the susceptible, infected, and recovered populations is not 

enough to represent the unique features of coronavirus. SIR model depicts coronavirus as a 

disease where individuals become sick immediately after contracting the virus and attain 

permanent immunity after recovering from it. I have addressed this weakness of SIR model by 

creating a new differential equation with the exposed category and incorporating the aspect of 

reinfection where the recovered population can become susceptible again, arriving at the 

SEIR+SRS model that accurately models the coronavirus epidemic in South Korea as 

consisting of four successive outbreaks that successively decrease in their magnitude of 

severity.  

In the second part of the exploration (from 4.1.1 to 4.3), I modelled the spread of coronavirus 

in South Korea’s population undergoing vaccination to quantify the effectiveness of 

vaccination in mitigating the spread of coronavirus. I compared not only the maximum number 

of infected but also the maximum rate of increase in the infected during the successive waves 

of coronavirus outbreak between the vaccinated and non-vaccinated population by 

approximating the derivatives for the infected curves obtained with the SEIR+SRS model with 

data extrapolated by Euler’s method. Within South Korea’s population undergoing vaccination, 

the maximum number of infected individuals in second and third outbreaks decreased by 72.5% 

and 68.4% compared to South Korea’s population not undergoing vaccination, respectively. 

Furthermore, rate of increase of the infected population at the peak of second and third outbreak 

decreased by 87.3% and 86.9% as well. This allows me to conclude that though vaccinated 

individuals can become susceptible to coronavirus again, the direct transfer from the 

susceptible to the recovered population through vaccination drastically reduces the severity of 

the second and third outbreaks by decreasing the proportion of susceptible population that can 

become exposed to the virus. Hence, from this estimation, it can be predicted that vaccination 

would have served a crucial role in reducing the spread of coronavirus in South Korea.  

Hence, this exploration concludes that SEIR+SRS model can effectively represent the spread 

of coronavirus in South Korea and predicts vaccination to have had crucial role in decreasing 

the magnitude of successive outbreaks and allowing the epidemic to come to a halt in South 

Korea.  
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6. Evaluation 

Like all mathematical modelling of real-life phenomenon, however, it is extremely difficult to 

make a perfect representation of how coronavirus has actually spread in South Korea. Although 

the SEIR+SRS model has its strength in capturing the essential aspects of coronavirus 

(incubation period, asymptomatic infection, asymptomatic recovery, and reinfection) and 

extrapolating the change in infected population that matches the real-life infected population 

data with a high degree of accuracy, the model bases itself from the myriads of assumptions. 

The model would not have worked if South Korea’s 50 million population was distributed 

unevenly, if hospitalization and quarantine were in effect, or if the contractibility of coronavirus 

varied throughout the epidemic. As a mathematical model cannot take account for exceptions 

or outliers, numerous generalizations must be accepted as a premise to predict the outcome of 

an epidemic, which is why my SEIR+SRS model is ultimately different from the real-life data.  

Furthermore, I have utilized Euler’s method to circumvent the challenge in finding analytical 

solutions to the set of differential equations in the SEIR+SRS model. Though Euler’s method 

was efficacious in producing numerical solutions which enabled this exploration to extrapolate 

the change in susceptible, exposed, infected, and recovered populations throughout the 

epidemic, numerical solutions are ultimately ‘approximations’ of the true values. 

Consequently, using Euler’s approximation to model the SEIR+SRS curves and approximate 

the derivatives for 𝐼(𝑡) and 𝐼°(𝑡) by plotting their discrete derivatives pose limitation to the 

mathematical accuracy of predicting the maximum number of infected and the maximum rate 

of increase in the infected population using my model. Although the SEIR+SRS model 

manages to predict the overall trend of the coronavirus epidemic in South Korea, the nature of 

numerical approximation to differential equations may have introduced errors in predicting the 

maximum number of infected individuals at each outbreak and temporal differences compared 

to the real-life data of infected population. 

Despite the mathematical limitations of my epidemiological model involving its accuracy, a 

key takeaway from my exploration is realizing the importance of vaccination in inhibiting the 

spread of disease. Although vaccination may not “guarantee” permanent immunity, as the 

increase in exposed and infected populations are both dependent on the susceptible population, 

it is vital that individuals take vaccination to minimize the interaction between the susceptible 

and exposed/infected patients. Limiting the spread of virus by decreasing the susceptible 

population is also a crucial step in establishing a “herd immunity.” The “physical barrier” 
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formed by the recovered population surrounding the non-vaccinated individuals allow even 

those who cannot take vaccines owing to their health conditions to be protected from the virus. 

 

7. Further Study  

As this investigation has relied upon the Euler’s method to circumvent the difficulty in 

obtaining the analytical solutions, future studies could attempt to solve the system of 

differential equations in SEIR+SRS model analytically. By obtaining functions that express the 

susceptible, exposed, infected, and recovered populations with respect to time, the 

mathematical accuracy of the epidemiological model can increase, thus its validity in modelling 

the coronavirus epidemic in South Korea.  

Alternatively, future studies could also attempt to model the spread of coronavirus with 

considerations of external factors such as quarantine or hospitalization. This could be attempted 

by simply adding more terms into existing differential equations or developing new population 

categories that further specifies which state individuals belong in. 

Lastly, future studies could find methods to represent the spread of coronavirus without 

grounding the epidemiological model to the set of assumptions listed in the background 

information. Finding methods to incorporate the population’s vital dynamics or represent the 

uneven population distribution across South Korea can further strengthen the validity and 

applicability of SEIR+SRS model in modelling epidemics.  
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