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ABSTRACT

Music has a profound impact on human emotion, with both lyrics and melody playing pivotal
roles in eliciting powerful feelings. These emotions may be evoked through the affective
qualities of songs, which we can automatically predict with a variety of artificial intelligence
methods that include natural language processing (NLP) and machine learning (ML).
Generally, the modalities of acoustics (sound) and language (the lyrics) are analysed
separately when making these predictions, so it is unknown what combining sound and text
would result in. This project sought to determine whether the prediction of the sentiment
associated with a song would improve if acoustics and language were combined. To answer
this question, this study analysed approximately 10,000 songs that were labelled with
sentiment ratings by humans using NLP and ML models (for example a neural network) to
establish the accuracy of predicting three dimensions of emotion: dominance (the amount of
control), arousal (the intensity), and valence (the pleasantness). To do this, a dataset was
created with 10,000 English songs by combining three datasets that are freely available: (i)
the musical sentiment dataset (MuSe), (ii) the Kaggle song lyrics dataset and (iii)
AcousticBrainz’s API. Importantly, these datasets contain varied features associated with the
songs, namely ratings of the three dimensions of sentiment, song lyrics and audio features,
respectively. It was anticipated that the accuracy of prediction would be higher when
combining two data types, compared to just one. As expected, combining more than one
modality of data enriches and improves the sentiment prediction. Current applications in the
music industry, such as music recommendations, are likely to match customers' preferences
better if a multimodal approach to analysing music is used. If it is possible to predict the
emotions that a song will evoke, in the future it will likely be possible for artificial intelligence
to tailor music recommendations more accurately.
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INTRODUCTION

Listening to music evokes emotions and feelings in us. We all have the experience of feeling
happy or sad based on the music we are listening to. Also, music can arouse us such that
we feel calm or excited. It can also have the effect of us feeling controlled by the music.
These features are measurable and are called dominance (the amount of control), arousal
(the intensity: calm or excited), and valence (the pleasantness: happy or sad) respectively
(Warriner et al., 2013). Importantly, these emotional features tend to be consistent and
universal in humans, such that a piece of music that evokes sadness in one person is also
likely to evoke sadness in another person. Naturally, the intensity of these emotions will vary
to some extent. Nonetheless, with enough data, in principle, these sentiment labels can be
predicted. For example, the music streaming service Spotify tracks its users’ listening habits
to make recommendations based on what kinds of songs users listen to. In part, the success
of their method is likely because the sentiment of the songs is evaluated in the algorithms
that are used to produce recommendations (Björklund et al., 2022). Put differently, they
examine the emotions associated with each song to predict what kind of song the user will
likely want to listen to next. Songs (comprised of lyrics and melody) contain numerous
features that can be used to measure the emotions they evoke. Examples of features
include the number of words, number of adjectives, beats per minute, key signature, and
wavelengths. Given the vast quantity of complex data and features, Spotify uses artificial
intelligence methods to classify songs as happy, sad, calm or upbeat, and can then use this
information to suggest similar songs to the user.

ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) is a general term for computer systems that show intelligent
behaviour (see terms and definitions in Table 1). There is a lot of excitement these days
about AI and machine learning. Machine Learning (ML) is a subset of AI that uses statistical
algorithms to learn from data. Natural Language Processing (NLP) is another subset of AI
that uses both statistical and linguistic knowledge to understand human language. The
potential applications of AI are vast, notably automating tasks and improving
decision-making processes. It is a massive, fast-moving, multi-billion-dollar industry.

Table 1: Definitions of key terms (derived from Chandler et al., 2020 & Warriner et al., 2013).

Artificial
intelligence (AI)

AI is a general term for computer systems that exhibit intelligent behaviour and can learn, explain, and
advise their users.

Machine learning
(ML)

ML is a subset of AI that harnesses statistical algorithms to learn features of data and the associated
importance of each (or simply the associated importance of user-defined features). Once the features
and their weights, as well as other hyperparameters are set, the model can predict some outcome or
clinical classification on new, unseen data.

Natural Language
Processing (NLP)

NLP is another type of AI that incorporates both statistical and linguistic knowledge to understand
human language.
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Neural Network A system of nodes, composed in layers, where each node learns some nonlinear equation on some
subset of training data and when all nodes are combined, a categorical or real-valued output can be
computed. Modern neural networks are deep, meaning they have hundreds to thousands of nodes and
layers and are trained on large datasets.

Sentiment
analysis

Sentiment analysis is a branch of AI that analyses a piece of data to predict the emotion that is
associated with the data.

Valence, arousal
and dominance

Some important aspects of sentiment are arousal, valence and dominance. Arousal is the intensity of
emotion and ranges from calm (low) to excited (high). Valence is the level of pleasantness that an
event generates. Finally, dominance is the level of control exerted by a stimulus.

MACHINE LEARNING METHODS

Numerous machine learning methods exist notably traditional models (such as linear and
logistic regression, support vector machines and decision trees) and more contemporary
models such as deep neural networks (Choi et al., 2020). In this project, both types of
models were explored.

Traditional machine learning methods use statistical information and complex correlation
functions to predict values or to classify. One type of traditional machine learning model is a
decision tree. Regarding Figure 1 below, decision trees are hierarchical tree-like models that
are composed of a root node (start point), decision nodes and leaf nodes (endpoint). Often
the root node is a specific question that leads to branches holding potential answers or
further questions. This process repeats until the data reaches a leaf node. Decision trees are
a popular machine learning model because they mimic how humans think when making a
decision, so their logic is easier to understand compared to other more complicated models.

Figure 1: Simplified representation of a decision tree (from Panigrahi, 2023).

One way to categorise models is supervised and unsupervised. In a supervised model, the
input data is labelled. The model goes through a training process where it has to make
predictions and it is corrected when the predictions are wrong. This process is repeated
several times until the model achieves the desired accuracy. Then the model is tested on the
test data. In an unsupervised approach, the model is given unlabeled data and asked to find
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trends on its own. All of the eight traditional models explored in this project were supervised,
and they are described below:

Linear regression is a type of regression method which takes in two variables and uses a
best-fit line (regression line) to see how well they correlate. Ridge regression is a type of
regression model that is based on linear regression, but with a modification of the loss
parameter. Lasso (Least Absolute Shrinkage and Selection Operator) regression is also
an extension of linear regression that produces accurate yet simple models that have few
parameters. The Gradient Boosting Regressor is an ensemble of decision trees, and the
final prediction is calculated from the average of all the decision trees’ predictions. The
AdaBoost (Adaptive Boosting) regressor is an ensemble model where additional
regressors are added for each instance during training, and the weights of these regressors
are adjusted based on the error of the current prediction. A multi-layer perceptron is a
neural network that has at least three layers. Even though it is classified as a deep learning
method, it is not as complicated as some of the other neural networks developed in this
project. Therefore it has been grouped under the ‘simple’ traditional models in this report.
Support Vector Regression is the regression variant of Support Vector Machines (that are
classifiers). Support Vector Machines group values into classes by finding a hyperplane
inside a high-dimensional figure that will best separate the values. A similar approach is
used by Support Vector Regression for regression analysis. Finally, random forests are
ensembles of decision trees that are each built randomly.

Regarding Figure 2 below, a neural network is a method used in AI that teaches computers
to process data in a way that is inspired by the human brain. It is a system of nodes that is
composed of layers, where each node learns an equation on some subset of training data.
When all the nodes are combined, the output is computed. Modern neural networks have
hundreds to thousands of nodes and layers and are trained on large datasets. An issue
when training a neural network is overfitting. This means that the model learns the statistical
noise in the training data, which causes the models to generalise poorly leading to poor
performance when tested on test data. Therefore, a regularisation method called ‘dropout’ is
often implemented to reduce the risk of overfitting. When dropout is used, some nodes are
randomly ignored or ‘dropped out’ during training which makes it more robust. (For an
overview of machine learning modelling methods see Ng, 2023).

Figure 2: Simplified representation of a neural network (from Kumar, 2023).
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MULTIMODAL MODELLING

Multimodal modelling is combining two or more modalities (e.g. language, audio and images)
in a model. In this project, the two modalities that were used were text (songs’ lyrics) and
audio (pre-computed audio features). Multimodal modelling techniques allow models to
process and analyse data from several modalities, creating a more complete and accurate
understanding of the data (Rosidi., 2023).

One way of combining models is ensemble modelling. Ensemble modelling operates by
combining multiple diverse models to create one prediction (Opitz & Maclin, 1999). By
combining several diverse models, the strengths of one model will compensate for the
other’s weaknesses. This results in a more robust and accurate final prediction. A majority
vote or a weighted average can combine the individual models’ predictions. A weighted
average means that the models with a smaller error were weighed higher (and accounted for
more of the final prediction) compared to the models that had higher error rates. As
mentioned in the Machine Learning Methods section above, random forests are an example
of ensemble models. Random forests combine multiple decision trees that are all trained on
different parts of the dataset. The final output of the model is determined by taking the
average of all the trees.

Another modelling approach is multimodal learning, where the goal is to combine information
from different modalities into one model. This approach is useful if the modalities provide
complementary information about each other. In the case of this study, that would mean
training one model on both the language and acoustic features. This approach would work
well if one language feature and one audio feature have a strong relationship that is
beneficial to the prediction.

SENTIMENT ANALYSIS

Sentiment analysis is the formal process of measuring the emotion associated with text,
audio and other modalities (such as images and video). Previously, machine learning models
have been used to analyse pieces of data to predict dimensions of the emotion associated
with it. Important prediction variables in sentiment analysis are arousal, valence and
dominance (for definitions, see Table 1 above). Arousal is the intensity of emotion and
ranges from calm (low) to excited (high). Valence is the level of pleasantness that an event
generates. Finally, dominance is the level of control exerted by a stimulus.

However, current methods for sentiment recognition are unable to detect the nuances in
language, for example sarcasm and irony. This may be because the approaches are
generally only examining one aspect of sentiment at a time (either lyrics or audio) or are only
predicting sentiment in a binary manner (positive or negative). Indeed, the accuracy of
sentiment recognition is likely to be superior if more than one datastream is examined
simultaneously to compute the sentiment. Therefore, this project sought to combine two
modalities (specifically text and audio features) to evaluate if the accuracy of predicting
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sentiment labels (valence, arousal and dominance) of songs is superior to a prediction
model based on just one modality. Specifically, this project built several ML models that use
both the lyrics and the audio features (i.e. multimodal) and examined whether this would
more accurately determine aspects of a song’s sentiment compared to unimodal models, or
even pre-trained models of sentiment.

RELATED WORK

To the best of my knowledge, the approach used in this project is unique, as there is no
research reported on harnessing multimodal sentiment analysis to use both audio and
language features to predict arousal, valence and dominance in songs. Multimodal
sentiment analysis is a relatively new field (Soleymani et al., 2017), and few studies have
been conducted where multimodal sentiment analysis has been used to analyse music. The
first paper that mentions the term was published in 2011 (Morency et al., 2011) where they
analysed videos (that include acoustic, visual and language features) to predict how happy
the subject in the video was. In terms of music, studies have mostly focused on classifying
songs as positive or negative (i.e., happy or sad) in a binary manner. There have been
several interesting findings in this field recently. For example, a study from 2016 used
multimodal sentiment analysis on songs (Abburi et al., 2016) and found that analysing the
first 30 seconds of the songs produced superior classifications of the two sentiments than
analysing the entire song. However, their dataset was small (<100 songs) and the songs
were in Telugu. A study from 2018 used multimodal deep learning to classify music by genre
(Oramas et al., 2018). Their approach is interesting as they used the audio tracks, text
reviews of the songs and cover art images to train their models. However, they did not
include the songs’ lyrics as a feature for the model to be trained on. As far as I am aware,
there has been no research so far published on using multimodal artificial intelligence to
predict emotional dominance, valence and arousal. However, in 2017 a study was done
where arousal, valence and dominance were jointly predicted using acoustic features
(Parthasarathy & Busso, 2017). Even though this project only examined one modality
(audio), papers like this set the stage for research such as this to be conducted.

The main goal of this project was to improve the accuracy of sentiment recognition in songs
by using a multimodal approach that combines language and acoustic features. The first
hypothesis was that if unimodal sentiment models were ensembled, the final prediction
would be more accurate than the predictions of these individual models alone. The second
hypothesis was that if a multimodal model (that takes in both acoustic and language
features) was created, the final prediction would be more accurate than any unimodal model.
Finally, the third hypothesis was that the ensemble and multimodal models' final
predictions would be more accurate than any pre-trained fine-tuned model. The dependent
variable was the performance of the model when evaluated by making predictions on the
test dataset. This was measured by the mean absolute error, which is a proxy of how
accurate the predictions the model makes are. The independent variables were the
features extracted and the type of model that was making the predictions. Several different
model types were evaluated, and the utilized feature and hyperparameters of said models
were found using machine learning methods (namely feature selection and grid search).
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METHODS

The goal of this project was to develop models that accurately predict three dimensions of
sentiment (dominance, arousal and valence) using multimodal data (acoustics and
language). In total, throughout this project, eight different models were developed to predict
these dimensions of sentiment. These include two acoustic models based on the auditory
signal from the songs, four language models based on the lyrics in the songs and two
multimodal models (based on both acoustics and language).

DATASET

Three different datasets were used:

(1) The musical sentiment (MuSe) dataset contains about 78,000 unique songs with
arousal, valence and dominance ratings (Akiki & Burghardt, 2021). The ratings were
on a scale of 0.2 to 8.5.

(2) The Kaggle lyrics dataset contains songs with lyrics from over 4000 artists (Shah,
2021).

(3) The AcousticBrainz API (application programming interface) was used to extract
pre-computed acoustic features for the songs (Porter et al., 2015).

These three datasets were combined, resulting in 10,000 unique songs with lyrics, labels,
and acoustic features. Then the data were split into train (70%), validate (15%) and test
(15%) datasets. The reason for this is to be able to use a portion of the data to train and
optimise the language and acoustic models, and the remaining data to test the accuracy of
the models. In the development of machine learning models, the models are often trained on
the train dataset and tested on the validate dataset, iteratively updating parameters until one
achieves a decent accuracy. Once one has determined the features, model architecture, and
hyperparameters that optimise the accuracy, it is then retrained on all data from the train and
validate sets, and tested on the held-out test dataset to determine the accuracy.

DATA DISTRIBUTION

The MuSe dataset contains sentiment information derived from the social tags given to that
song on the website Last.fm (an online music database), derived through the Warriner et al.
(2013) database, and expressed across the three dimensions: dominance, valence, and
arousal.

The range of possible values for dominance was 0.23 - 7.44, the average was 5.40 and the
standard deviation was 1.04. For valence the range was 0.24 - 8.47, the average was 5.72
and the standard deviation was 1.47. Finally, for arousal the range was 0.13 - 7.27, the
average was 4.31 and the standard deviation was 1.05. Density plots showing the
distribution of the three labels are given below in Figure 3.
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Figure 3: Density plot of the distribution of values for the dominance, valence and arousal
ratings.

The density plots show that the range of values in the three sentiment labels was quite
limited. This impacted the study, as there was a limited number of songs with extreme
ratings (either very low or very high). Even though the axes are different across the three
labels, it is apparent that the valence label has a wider range and more even distribution of
values compared to the other two sentiment labels. It is also interesting to note that the
arousal label has the smallest range of values. The density plot for the dominance label has
the steepest peak, which suggests that the range of values is not distributed evenly and that
a high percentage of the values lie in the interval between 5 and 6. Smaller variability in a
prediction variable may cause machine learning models to be unable to learn the nuances of
the relationship between various features and the prediction variable.

FEATURES

Both the acoustic and language-based models developed in this project were feature-based,
and some of these features are described below.

(1) Acoustic features:

Since raw audio files for songs are not freely available, the acoustic features were retrieved
from an API that contains pre-computed acoustic measurements. Specifically, these features
were pre-computed by acousticbrainz (Porter et al., 2015), and are broken down into three
core categories: low-level, rhythm, and tonal features.

The low-level features include key signature, length, loudness and mel frequency cepstral
coefficients (MFCCs) of the songs, among many others. MFCCs are coefficients derived
from sound waves and computed using Fourier transforms and logarithms (Sato & Obuchi,
2007). Another low-level feature is the low-level spectral contrast coefficient. The spectral
contrast coefficient is a measure of the distance between the peaks and valleys in a sound
wave (Yang et al., 2003). Next are rhythm features, which include the number of beats in the
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song, beats per minute and danceability. Beats per minute is an important measurement
regarding the tempo of a song, which also affects the danceability measure. The last type of
acoustic feature are tonal features. These include number of chords, strength of chords, key
signature and whether the song is in major or minor. This is relevant to sentiment prediction
because songs in major keys tend to be happier, whereas songs in a minor key are often
classified as negative and sad.

(2) Language features:

Unlike the acoustic dataset, the lyrics dataset did not include precomputed features.
Therefore, features such as the number of words, the number of unique words, the lexical
richness, the content density, the frequency of various parts of speech types, and the
number of named entities were extracted from the dataset for each song.

The SpaCy model (Vasiliev, 2020) was used to retrieve the named entities from the dataset.
Named entities are a word class of proper nouns. For example places, people and
addresses. The reason for extracting this feature was that it seemed logical to assume that
songs that contained several named entities would be more personal (which could relate to
the song’s sentiment). Another feature that was computed is lexical richness. Lexical
richness is a measure of the diversity in a text and is often calculated using the type-token
ratio (Toruella & Capsada, 2013). This ratio is found by dividing the total number of different
words (types) by the total number of words (tokens). A high type-token ratio (close to 1)
suggests high lexical richness, whereas a low value (close to 0) suggests that there is little
variation in the text. Another important feature that was extracted is the content density. This
metric is quite similar to lexical richness. The content density of a text was calculated by
dividing the total number of verbs, nouns, adjectives and adverbs by the total number of
words in the song.

(3) Sentiment values from pre-trained models:

A pre-trained model is a model that has been previously trained on a large dataset and can
then be fine-tuned to solve a specific task. In this study, pre-trained models were used to
compute sentiment values for each of the songs in the dataset. These sentiment values
were used as features that the models developed in this project use to predict the sentiment
labels. First, the Distilbert sentiment model (distilbert-base-uncased-finetuned-sst-2-english)
was used to calculate sentiment values for the songs’ lyrics. (Sanh et al., 2019). This model
is a text classifier that outputs two values (how positive and negative the text is) that range
between 0 and 1.

The RoBERTa sentiment model (siebert/sentiment-roberta-large-english) was also used to
calculate how positive and negative the song lyrics in the dataset were (Liu et al., 2019).
This model is a version of the popular RoBERTa model that is trained specifically for
sentiment analysis. Another type of sentiment analyzer that was used is VADER. VADER is
a rule-based model for sentiment that was created to deal with text from social media. (Hutto
& Gilbert, 2014). The model outputs three sentiment values: how positive, neutral and
negative the text is. These values range between 0 and 1. In addition, the VADER model
computes the average sentiment of the text. This value ranges between -1 and 1.
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FEATURE SELECTION

Feature selection was used to find which subset of features were best suited to predicting
the target values (dominance, valence and arousal labels). To do this, both correlation and
mutual information approaches were used. Correlation is a measure of how two variables
change together. In this case, the two variables were sentiment labels and the relevant
features. Feature selection was also explored using a mutual information approach. Mutual
information is calculated between two variables and measures the reduction in uncertainty
for one variable given a known value of the other variable. In other words, it is the amount of
information one variable gives about the other (Vergara & Estévez, 2013). The reason to
perform feature selection is to limit the input that the model receives to just the relevant
features. Feature selection was performed not only to find which features were most
predictive of the three sentiment labels, but also the optimum number of features that should
be given as input.

HYPERPARAMETER OPTIMIZATION AND GRID SEARCH

Hyperparameter optimization is the process of finding the optimal combination of
hyperparameters for a model. In a neural network, hyperparameters are used to determine
how the model is training (e.g. number of layers, number of neurons and learning rate). In
this project, hyperparameter optimization was performed using grid search. Grid search is
essentially going through all the possible combinations of hyperparameters to find the best
combination (Feurer & Hutte, 2019). The keras tuner library (O’Malley et al., 2019) was used
to conduct a grid search for the two neural networks

Grid search was also performed for the two traditional models, but instead of testing different
hyperparameter combinations, the model types and feature combinations were evaluated.
For grid search on these two traditional models, the scikit-learn library was used (Pedregosa
et al., 2011). The eight different types of traditional models (described above in the Machine
Learning Methods section in the Introduction on page 7) were evaluated during the grid
search. These include three classic regression models (linear, ridge and lasso regression),
two ensembles of classic regression models (gradient boosting regressor and ada boost
regressor), one simple neural network (multi-layer perceptron), and two other models
(support vector regressor and random forests). For each of the eight traditional model types,
different combinations of hyperparameters were tested to see which combination had the
lowest error.

After using grid search to find the best hyperparameters combinations, the models were
defined with said hyperparameters. Then the models were trained on the train data and
tested on the validation set with different parameters. The goal when training a model is to
maximise the accuracy on the validation set, so lots of combinations of these parameters are
tested. During the training of the neural networks specifically, different versions of the model
were saved at ‘checkpoints’. Once the neural network has finished training one can
determine which set of hyperparameters was best, and which checkpoint of training to use
by evaluating the model on the validate set, and finally testing that model on the test dataset.
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MODELS

Throughout this project, several different types of machine learning models were
investigated to see what would be best suited to this task of predicting sentiment values. In
this project, both traditional models and neural network models were explored, in addition to
both feature-based and non-feature-based approaches. Two models were made for
predicting sentiment using acoustic information (due to the aforementioned limitations of the
acoustic data), and four models were made using language features. In addition, two types
of ensemble models were created. Therefore these eight models are presented below.

(1) Traditional feature-based model using acoustic features:

Acoustic features were used alongside a grid search methodology to train and optimise
traditional machine learning models for predicting the sentiment labels.

(2) Feature-based neural network using acoustic features:

The second type of model that was explored was a neural network that predicts sentiment
based on the acoustic features. The same features that were extracted for model (1) were
used in this model. Similar to model (1), a grid search was used to determine which neural
network hyperparameters would be best at predicting the target values.

(3) Traditional feature-based model using language features:

As in the first approach, feature selection was performed on the language feature set, and a
grid search methodology was used to train and optimise traditional machine learning models.

(4) Feature-based neural network on language:

A language-based neural network model was also developed. The same features that were
extracted for model (3) were used in this model. As in the previous models, a grid search
approach was used to find the best combination of hyperparameters for the model structure.

The next two models are unique to the language modality as the raw lyrics can be
harnessed directly (whereas with the acoustic modality, only pre-computed features could be
used for modelling).

(5) Traditional model based on BERT embeddings:

In addition, the BERT (Bidirectional Encoder Representations from Transformers) vector
embedding of each song was computed. The BERT model is a popular open-source NLP
model that was developed by researchers at Google (Devlin et al., 2018). The BERT model
can take in 512 tokens (words from the songs) and outputs a vector that contains a long
string of numbers. Each token has a unique vector, and by computing the cosine distance
between two vectors one gets a measure of coherence. In this study, the BERT vector was
calculated for each song in the dataset. Grid search was performed to see which type of
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traditional machine learning model was best suited to predicting sentiment values using the
BERT vectors. As with the models above, after finding the type of model with the highest
accuracy, it was tested on the test dataset.

(6) RoBERTa fine-tuned language model:

A large language model (RoBERTa) was fine-tuned to predict the arousal, valence and
dominance values in the dataset. Fine-tuning is a technique used to adapt pre-trained neural
network models for a specific task or dataset. The RoBERTa model is trained on general
text, and it does not have experience in sentiment prediction. Therefore, the model was
fine-tuned so that it was better suited to predict arousal, valence and dominance of songs.

(7) Ensembled multimodal model:

One approach to ensemble modelling is to combine the outputs of several base models to
create one final prediction. Each unimodal machine learning model mentioned above was
ensembled together to make one final model. The six outputs of the models were combined
by calculating the mean. Averaging is a common way of combining models as all the six
base models are taken into account in the final prediction.

(8) A single multimodal model:

The final type of model explored in this project was one multimodal model that combines
information from different modalities into a single model. In contrast to the previous model
(7) where all the outputs from the different models were combined in the prediction, in this
model all the features (from both the language and acoustic modalities) were combined into
one feature set. Feature selection was performed to see which features would be most
useful to include in the model’s input. As in the above models, both feature selection and
grid search were used to create one final multimodal model. This model type works well if
the modalities provide complementary information about each other. This could be because
one language feature and one audio feature have a strong relationship that is beneficial to
the prediction.

After developing and testing the above models on the train and validate datasets, they were
tested individually on the held-out test set.

EVALUATION

While developing and testing these machine learning models, mean absolute error (MAE)
was used to evaluate how the model was performing. As a part of the training, the model will
make predictions of the sentiment. The MAE is a measure of how far off the prediction is to
the true value (which is labelled by humans). In this project, the goal was to predict
sentiment values that range from 1 to 9. A MAE of 1.5 would mean that on average the
model’s predictions are 1.5 points away from the real score. This measure is useful as it
provides insight into how the model is performing. Other key measures include the
smallest/largest prediction and the standard deviation.
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TOOLS

The project code was written and run in Google Colaboratory (Bisong, 2019) and Jupyter
Notebook (Kluyver et al., 2016) and is available at my GitHub repository (professorlara):
https://github.com/professorlara/Predicting-emotions-in-music-using-artificial-intelligence
These are web-based interactive platforms for writing, running and sharing code. To develop
the traditional ML models, the scikit-learn library was used (Pedregosa et al., 2011).
Scikit-learn is a widely used library for creating machine learning models in Python. The
Keras library was used to develop the neural networks (Chollet et al., 2015). Keras is a free
but highly powerful API, used for developing deep learning models (such as neural
networks) in Python. For importing and manipulating the datasets, the Pandas library was
implemented (McKinney, 2010).

RESULTS

FEATURE SELECTION

Results summary (Table 2, Panels A and B): In summary, in Table 2 [A] on acoustics it is
clear that the low-level spectral contrast coefficient is the feature that correlated the highest
to all three sentiment labels. In Table 2 [B] the barkband feature was most predictive of
dominance, whereas the melband feature was most predictive of valence and arousal. In
Table 2 [A] and [B], arousal was the label that had the strongest relationship to the acoustic
features, as the correlation and mutual information scores were considerably higher than
valence and dominance.

Table 2: Top 5 acoustic features for dominance, valence and arousal ratings using
correlation [A] and mutual information [B]. The scores range from 0-1. (For further
descriptions of each of the features see Bogdanov et al., 2013).

Dominance Valence Arousal

Feature Score Feature Score Feature Score

1 acousticbrainz_lowlevel_spectral
_contrast_coeffs_dvar2

0.189 acousticbrainz_lowlevel_spectral_co
ntrast_coeffs_dvar2

0.211 acousticbrainz_lowlevel_spectral_
complexity_dmean

0.419

2 acousticbrainz_lowlevel_spectral
_contrast_coeffs_dvar3

0.183 acousticbrainz_lowlevel_spectral_co
ntrast_coeffs_dmean2

0.189 acousticbrainz_lowlevel_spectral_
complexity_dmean2

0.416

3 acousticbrainz_onset_rate 0.175 acousticbrainz_lowlevel_spectral_co
ntrast_coeffs_dvar3

0.178 acousticbrainz_lowlevel_melbands
_spread_dmean

0.408

4 acousticbrainz_lowlevel_spectral
_contrast_coeffs_dmean3

0.171 acousticbrainz_lowlevel_spectral_co
ntrast_coeffs_dmean3

0.174 acousticbrainz_lowlevel_melbands
_spread_dmean2

0.407

5 acousticbrainz_lowlevel_spectral
_contrast_valleys_dmean2

0.158 acousticbrainz_onset_rate 0.174 acousticbrainz_lowlevel_barkband
s_spread_dmean2

0.398

[A]
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Dominance Valence Arousal

Feature Score Feature Score Feature Score

1 acousticbrainz_lowlevel_barkban
ds_skewness_var

0.046 acousticbrainz_lowlevel_melbands_
median29

0.062 acousticbrainz_lowlevel_melbands
_spread_dmean

0.139

2 acousticbrainz_lowlevel_spectral
_centroid_dmean

0.042 acousticbrainz_lowlevel_barkbands_
spread_dmean

0.058 acousticbrainz_lowlevel_melbands
_spread_dmean2

0.131

3 acousticbrainz_lowlevel_spectral
_energyband_high_dvar2

0.041 acousticbrainz_lowlevel_melbands_
median21

0.055 acousticbrainz_lowlevel_spectral_c
omplexity_dmean

0.126

4 acousticbrainz_lowlevel_spectral
_contrast_valleys_dvar3

0.041 acousticbrainz_lowlevel_barkbands_f
latness_db_mean

0.054 acousticbrainz_lowlevel_spectral_c
entroid_dmean

0.124

5 acousticbrainz_lowlevel_spectral
_centroid_dvar2

0.041 acousticbrainz_lowlevel_spectral_co
ntrast_coeffs_dmean2

0.053 acousticbrainz_lowlevel_barkband
s_spread_median

0.124

[B]

Results summary (Table 3, Panels A and B): In Panel A, the average sentiment of the
song correlated highly with dominance and valence. For arousal, content density correlated
highest. Panel B shows that verb count scored highly for dominance, the number of 5-grams
was best for valence, and adjective count in the song had the highest mutual information
score for arousal. A high mutual information score reflects the fact that the feature and the
label share a lot of information, so the feature can be used to predict the label. As in Table 2,
arousal had the strongest relationship to the language features. (For further descriptions of
the language features, see the Features section above on pages 11-12).

Table 3: Top 5 language features for dominance, valence and arousal using correlation [A]
and mutual information [B].

Dominance Valence Arousal

Feature Score Feature Score Feature Score

1 Average sentiment from Vader
model, computed individually by
song line

0.178 Average sentiment from Distilbert
model, computed individually by
song line

0.212 Content density 0.235

2 Average sentiment from
Distilbert model, computed
individually by song line

0.154 Ratio of positive sentiment from
Distilbert model, computed
individually by song line

0.210 Total verb count 0.231

3 Ratio of positive sentiment from
Distilbert model, computed
individually by song line

0.154 Average sentiment from Vader
model, computed individually by
song line

0.204 Number of lines 0.230

4 Ratio of positive sentiment from
Roberta model, computed
individually by song line

0.149 Ratio of positive sentiment from
Roberta model, computed
individually by song line

0.202 Number of 5-grams 0.226

5 Average sentiment from Roberta
model, computed individually by
song line

0.148 Average sentiment from Roberta
model, computed individually by
song line

0.202 Number of unique 5-grams 0.227

[A]
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Dominance Valence Arousal

Feature Score Feature Score Feature Score

1 Total verb count 0.037 Number of 5-grams 0.039 Adjective count 0.051

2 Median sentiment from Roberta
model, computed individually by
song line

0.032 Number of unique 4-grams 0.0385 Number of words 0.049

3 Average sentiment from Roberta
model, computed individually by
song line

0.031 Number of trigrams 0.0384 Number of unique 5-grams 0.0483

4 Number of lines 0.027 Number of words 0.0378 Number of 4-grams 0.0482

5 Base verb frequency 0.025 Number of 4-grams 0.0377 Number of unique bigrams 0.047

[B]

GRID SEARCH:

Results summary (Table 4, Panels A to F): The results in Panel A show that a Random
Forest Regressor model that is composed of 68 estimators (decision trees) is the best type
of traditional model for predicting dominance using acoustic data. Panel B suggests a
Gradient Boosting Regressor model type which, like the model in Table 4 [Panel A], is an
ensemble model. Panels C and D show the results from the grid search to find the best
architecture for the neural networks. For both model types, the use of dropout during training
was recommended. Panel E suggests that a model using Lasso regression is best for
predicting the sentiment label using BERT embeddings. Finally, for the multimodal model
[Panel F], Support Vector Regression yielded the lowest error.

Table 4: Grid search results illustrating which model type and combination of
hyperparameters were best at predicting dominance (Panels [A] to [F] for each of the
model types excluding the fine-tuned RoBERTa model and the ensembled model).

Estimator Mean absolute error Hyperparameters

Random Forest Regressor 0.7557 minimum samples
per leaf

number of
estimators

10 68

Gradient Boosting
Regressor

0.7566 minimum samples
per leaf

number of
estimators

criterion learning rate loss

8 200 mse 0.1 ls

Random Forest Regressor 0.7575 minimum samples
per leaf

number of
estimators

8 55

[A] Grid search for traditional acoustic model

18



Estimator Mean
absolute
error

Hyperparameters

Gradient Boosting Regressor 0.7588 criterion learning rate loss minimum samples
per leaf

number of
estimators

squared_error 0.1 absolute_error 8 100

Gradient Boosting Regressor 0.7592 criterion learning rate loss minimum samples
per leaf

number of
estimators

squared_error 0.1 absolute_error 10 100

Gradient Boosting Regressor 0.7609 criterion learning rate loss minimum samples
per leaf

number of
estimators

squared_error 0.1 absolute_error 8 200

[B] Grid search for traditional language model

Mean
Absolute
Error

Hyperparameters

0.76800 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

tanh True 0.0055 2 224 32

0.76802 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

nodes in
layer 4

tanh True 0.0015 5 256 448 384 416 32

0.76803 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

nodes in
layer 4

tanh True 0.0012 5 416 384 64 32 128

[C] Grid search for acoustic-based neural network

Mean
Absolute
Error

Hyperparameters

0.73785 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

nodes in
layer 4

tanh True 0.00024 5 128 320 320 288 128

0.75586 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

tanh True 0.00014 2 32 512

0.76619 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

tanh True 0.00082 4 512 288 480 320

[D] Grid search for language-based neural network
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Estimator Mean absolute error Hyperparameters

Lasso Regression 0.772 alpha

0.001

Lasso Regression 0.784 alpha

0.01

Lasso Regression 0.794 alpha

0.0001

[E] Grid search for traditional model based on BERT embeddings

Estimator Mean absolute error Hyperparameters

Support Vector
Regression

0.8049 Strength of regularisation parameter Degree of polynomial kernel function epsilon kernel

0.01 1 0.2 linear

Support Vector
Regression

0.8058 Strength of regularisation parameter Degree of polynomial kernel function epsilon kernel

0.05 1 0.2 linear

Support Vector
Regression

0.8066 Strength of regularisation parameter Degree of polynomial kernel function epsilon kernel

0.01 1 0.5 linear

[F] One multimodal model

Results summary (Table 5, Panels A to F): The results from Table 5 suggest that Ridge
Regression and Support Vector Regression model types are well-suited traditional models to
predicting the valence label. The results also show that the acoustic-based neural network
should use dropout as part of the training, whereas the language-based neural network
should not.

Table 5: Grid search results illustrating which model type and combination of
hyperparameters were best at predicting valence (Panels [A] to [E] for each of the model
types excluding the fine-tuned RoBERTa model and the ensembled model).

Estimator Mean absolute error Hyperparameters

Ridge
Regression

1.12560 alpha fit intercept solver

0.0001 True svd

Ridge
Regression

1.12567 alpha fit intercept solver

0.001 True cholesky

Ridge
Regression

1.12574 alpha fit intercept solver

0.00001 True cholesky

[A] Grid search for traditional acoustic model
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Estimator Mean absolute error Hyperparameters

Support Vector
Regression

1.1528 Strength of regularisation parameter Degree of polynomial kernel function epsilon kernel

0.05 1 0.5 linear

Support Vector
Regression

1.1530 Strength of regularisation parameter Degree of polynomial kernel function epsilon kernel

0.01 1 0.5 linear

Support Vector
Regression

1.1539 Strength of regularisation parameter Degree of polynomial kernel function epsilon kernel

0.01 1 0.2 linear

[B] Grid search for traditional language model

Mean
Absolute
Error

Hyperparameters

1.1414 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

nodes in
layer 4

tanh True 0.0004 3 384 128 160 160 384

1.1507 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

nodes in
layer 4

tanh False 0.0003 5 192 448 128 384 32

1.1532 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

tanh False 0.0027 1 320 128 512 448

[C] Grid search for neural network based on acoustics

Mean
Absolute
Error

Hyperparameters

1.0915 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

tanh False 0.00059 4 128 256 224 64

1.0918 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

tanh False 0.00099 3 96 288 384

1.0919 activation dropout learning rate layers nnodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

nodes in
layer 4

relu True 0.00016 5 160 32 480 448 224

[D] Grid search for neural network based on language
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Estimator Mean absolute
error

Hyperparameters

Lasso Regression 1.1393 alpha

0.0001

GradientBoosting
Regressor

1.1469 learning rate minimum samples per
leaf

number of estimators

0.1468 6 71

GradientBoosting
Regressor

1.1471 learning rate minimum samples per
leaf

number of estimators

0.1468 6 65

[E] Grid search for a traditional model based on BERT embeddings

Estimator Mean
absolute
error

Hyperparameters

Gradient Boosting Regressor 1.0760 criterion learning rate loss minimum samples
per leaf

number of
estimators

squared_error 0.1 absolute_error 8 200

Gradient Boosting Regressor 1.0767 criterion learning rate loss minimum samples
per leaf

number of
estimators

squared_error 0.1 absolute_error 10 100

Gradient Boosting Regressor 0.0781 criterion learning rate loss minimum samples
per leaf

number of
estimators

squared_error 0.1 absolute_error 8 200

[F] One multimodal model

Results summary (Table 6, Panels A to F): The results in Panels A and B suggest that
Ridge Regression and Support Vector Regression model types are well-suited traditional
models to predicting the valence label. Similar to what was reported in Table 5 above, the
results in Table 6 Panels C and D also show that dropout should be used when training the
acoustic-based neural network, whereas in the language-based neural network, it should not
be used. Panel E in Table 6 suggests that a Lasso Regression model for predicting valence
using the BERT embeddings is preferable. Lastly, similar to the findings reported in Table 5
Panel F above, the results in Table 6 Panel F support the idea that a Gradient Boosting
Regressor would be the best traditional model type for the multimodal model.
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Table 6: Grid search results illustrating which model type and combination of
hyperparameters were best at predicting arousal (Panels [A] to [F] for each of the model
types excluding the fine-tuned RoBERTa model and the ensembled model).

Estimator Mean absolute
error

Hyperparameters

Support Vector
Regression

0.7556 Strength of regularisation parameter Degree of polynomial kernel function epsilon kernel

0.01 1 0.2 linear

Support Vector
Regression

0.7567 Strength of regularisation parameter Degree of polynomial kernel function epsilon kernel

0.05 1 0.2 linear

Support Vector
Regression

0.7590 Strength of regularisation parameter Degree of polynomial kernel function epsilon kernel

0.05 1 0.5 linear

[A] Grid search for traditional acoustic model

Estimator Mean absolute error Hyperparameters

Gradient
Boosting
Regressor

0.8101 criterion learning rate loss minimum samples per leaf number of
estimators

squared_error 0.1 absolute_error 10 200

Gradient
Boosting
Regressor

0.8113 criterion learning rate loss minimum samples per leaf number of
estimators

squared_error 0.1 absolute_error 8 200

Gradient
Boosting
Regressor

0.8114 criterion learning rate loss minimum samples per leaf number of
estimators

squared_error 0.1 absolute_error 10 100

[B] Grid search for traditional language model

Mean
Absolut
e Error

Hyperparameters

0.7038 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

nodes in
layer 4

nodes in
layer 5

relu True 0.0004 6 448 160 64 32 288 512

0.7178 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

nodes in
layer 4

nodes in
layer 5

tanh False 0.0002 6 480 320 512 128 224 480

0.7182 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

nodes in
layer 4

nodes in
layer 5

tanh True 0.0001 6 128 320 512 512 96 32

[C] Grid search for neural network based on acoustics
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Mean
Absolute
Error

Hyperparameters

0.7998 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

nodes in
layer 4

nodes
in layer
5

tanh False 0.0003 6 256 224 416 352 512 160

0.8068 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

nodes in
layer 4

nodes
in layer
5

tanh True 0.0003 6 64 192 128 128 32 32

0.7182 activation dropout learning rate layers nodes in
layer 0

nodes in
layer 1

nodes in
layer 2

nodes in
layer 3

nodes in
layer 4

nodes
in layer
5

tanh False 0.0003 6 512 96 224 416 416 192

[D] Grid search for neural network based on language

Estimator Mean absolute error Hyperparameters

Lasso
Regression

0.7834 alpha

0.001

Lasso
Regression

0.8030 alpha

0.0001

Lasso
Regression

0.8049 alpha

0.01

[E] Grid search for a traditional model based on BERT embeddings

Estimator Mean absolute error Hyperparameters

Gradient
Boosting
Regressor

0.7075 criterion learning rate loss minimum samples per leaf number of
estimators

squared_error 0.1 absolute_error 10 200

Gradient
Boosting
Regressor

0.7079 criterion learning rate loss minimum samples per leaf number of
estimators

squared_error 0.1 absolute_error 8 200

Gradient
Boosting
Regressor

0.7084 criterion learning rate loss minimum samples per leaf number of
estimators

squared_error 0.1 absolute_error 8 100

[F] One multimodal model
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RESULTS SUMMARY (TABLES 7, 8 AND 9): As can be seen from Tables 7 to 9 below, the
arousal label was the easiest to predict as it had overall the lowest error rate ranging
between 0.73 to 0.81. Surprisingly, the valence label was the hardest to predict, with error
rates ranging between 1.1 and 1.9. This might be because, out of the three datasets, the
valence label had the largest range in the original dataset, which meant that there was more
margin for error. The MAE of the models predicting dominance tended to be between 0.77
and 0.84, slightly worse than the arousal models.

Table 7: Comparison of models: Mean absolute error of all 8 model types when predicting
dominance on the test dataset

Model type Mean absolute error on test dataset

Traditional acoustic model 0.7771

Neural network based on acoustics 0.8273

Traditional language model 0.8214

Neural network based on language 0.8421

Language model based on BERT embeddings 0.8245

Fine-tuned roBERTa model 0.8118

Ensembled multimodal model 0.8174

A single multimodal model 0.7752

Table 8: Comparison of models: Mean absolute error of all 8 model types when predicting
valence on the test dataset

Model type Mean absolute error on test dataset

Traditional acoustic model 1.1472

Neural network based on acoustics 1.1023

Traditional language model 1.1214

Neural network based on language 1.1959

Language model based on BERT embeddings 1.1188

Fine-tuned roBERTa model 1.1682

Ensembled multimodal model 1.1423

A single multimodal model 1.1406
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Table 9: Comparison of models: Mean absolute error of all 8 model types when predicting
arousal on the test dataset

Model type Mean absolute error on test dataset

Traditional acoustic model 0.7351

Neural network based on acoustics 0.7331

Traditional language model 0.7892

Neural network based on language 0.7888

Language model based on BERT embeddings 0.7685

Fine-tuned roBERTa model 0.8182

Ensembled multimodal model 0.6911

A single multimodal model 0.7341

DISCUSSION

The music datasets used in this project had arousal, valence and dominance sentiment
labels associated with the songs. The goal of this study was to see if a multimodal approach
to predicting these sentiment labels would result in more accurate predictions compared to
the prediction from unimodal modelling approaches. A challenge faced was that there was a
very small range of values for the three sentiment labels, resulting in that the final models
made poorer predictions than if they had been trained on a full range of sentiment labels.

The first hypothesis in this project was that if the six unimodal models’ predictions were
ensembled, the final prediction would be more accurate than the individual base models
alone. This hypothesis was correct for the ensemble model predicting arousal, but not for the
dominance and valence models. The second hypothesis was that the three multimodal
models’ final predictions would have a higher accuracy than any of the six unimodal models.
This prediction was correct only for the multimodal model predicting dominance. However,
the arousal model had the second-best error rate (after the acoustic-based neural network).
The third hypothesis was that both the ensemble and multimodal models would outperform
the pre-trained and fine-tuned RoBERTa models’ predictions. This hypothesis was true for
the models predicting valence and arousal, as the mean absolute error for these two models
was lower than the fine-tuned models’. However, for the dominance model, the fine-tuned
RoBERTa model had a slightly lower error rate than the ensemble model, but had a higher
error rate than the multimodal model.

In general, the arousal label was easier to predict: the error rate was significantly lower in
models that were predicting arousal compared to the other two labels. Also, when
performing feature selection, the arousal label correlated highest to both the language and
acoustic features. In contrast, both the unimodal and multimodal models that predicted
valence had significantly higher error rates compared to the arousal and dominance labels.
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This result is interesting as it suggests that certain aspects of sentiment are better suited to
sentiment prediction than others.

One limitation of this study was that it was not possible to access the songs’ raw audio files
for the acoustic models. This is in contrast to the language part of the project, where since
there was access to the full lyrics, features could be extracted that were thought to be
interesting and beneficial to this prediction. Instead, the acoustic dataset contained
pre-computed audio features from acousticbrainz such as MFCCs, tempo and key signature.
Therefore, feature-based models had to be created using these pre-computed features. If
the raw audio files had been accessible, there would have been more flexibility in modelling.
Nonetheless, the acoustic feature-based models generally outperformed the
language-based models (where there was the option of using other modelling techniques).

CONCLUSION

This study analysed close to ten thousand songs using various machine learning methods to
predict three dimensions of sentiment, namely dominance, arousal, and valence. In general,
the arousal label was easiest to predict as evident by the models predicting arousal having
lower error rates compared to the other two labels. As expected, in some cases, a
multimodal approach of combining data modalities both enriched and increased the
accuracy of predicting the sentiment of the songs. The methods that were developed in this
project have several implications in the real world. For example, these sentiment analysis
techniques could be used by Spotify to improve their music recommendation system such
that they make their recommendations even more personal and tailor-made to the user. In
addition, these methods could be used in areas beyond just music and songs. For example,
voice recognition software, such as Siri and Alexa, might benefit from these concepts as
they could enable their technology to properly understand the emotion a user is trying to
convey, and thereby adapt their responses accordingly. Furthermore, the approach used in
this study could help improve voice recognition software in particular by detecting and
interpreting the use of sarcasm and irony in their users, which has long been a limiting factor
and models have traditionally performed quite poorly on these dimensions. In conclusion,
this project showcases the added value of adopting a multimodal approach to sentiment
recognition.
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