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1 Introduction

Origami is an ancient Japanese art, involving the folding of uncut paper

into structures through geometric manipulations (Meloni et al. 2021). To-

day origami has gone beyond paper and art finding applications in fields from

aerospace to nanorobotics (ibid.). Origami principles also help explain biome-

chanical systems, from leaves (Dureisseix 2012) to microorganisms (Flaum

and Prakash 2024). The usefulness of origami comes from its compact deploy-

able system applying to both 2D and 3D structures; its transfer of mechan-

ical force; and its self-actuation properties, which are all scale-free (Meloni

et al. 2021). However, one must understand the underlying mathematical

properties and restrictions to use origami to its fullest. Several mathemati-

cians have found interest in this branch of geometry, discovering underlying

axioms and theorems (Hull 2021); developing origami designing algorithms

(Lang 1996; Lang 2011); and folding simulators (Mitani 2012; Tachi 2009).

However, origami mathematics is still young and there are many unanswered

questions. One such question is what the criteria for origami unraveling are.

Why do some designs unravel when pulled and others do not? No literature

was found to have explored this question, hence it was developed into the

Extended Essay research question ”How to mathematically evaluate whether

a rigid flat-foldable origami design will unravel or not, and whether it will

unravel completely or incompletely when pulled from two points?”, which is

defined in the Preliminary section. This question will be explored through
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experimentation to find patterns; geometric analysis to explain and under-

stand observations; and development of theorems. Finding an answer to this

question will provide an algorithm to theoretically analyze origami unravela-

bility (the extent to which an origami design can unravel), reducing the need

for experimental testing.
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2 Preliminary

To explore this research question some preliminary definitions and clarifi-

cations must be made. Firstly origami must be defined (Definition 1 and

2).

Definition 1. Origami is strictly defined as structures folded from a flat sheet

pR2q (Hull 2021) where any two points pA,Bq on the sheet have a straight-line

segment pABq on the sheet (Expression 1).

AB Ă R2 (1)

Definition 1 was inspired by Talagrand’s lecture on his Abel prize-winning

work at University of Stavanger (Talagrand 2024).

Definition 2. Origami structures are folded from a non-cut sheet where no

two faces, sa and sb, intersect (sa X sb) (Hull 2021).

Both Definition 1 and 2 are common definitions in origami literature

(ibid.), but in this Extended Essay, origami is further restricted to rigid

origami (Definition 3).

Definition 3. Rigid origami is any origami (Definition 1) where the sheet

is only permitted to deform along crease lines (Misseroni et al. 2024).

Definition 3 is a common restriction in origami application research, as it

is the condition of most mechanical systems (Hull 2021; Meloni et al. 2021;
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Misseroni et al. 2024). All three definitions (Definition 1, 2, and 3) permit

origami to extend beyond the traditional restrictions, allowing origami to

be structures folded from rigid sheets of any material, ranging from steel to

polymer composites (Deleo et al. 2020), increasing applicability to the vari-

ous mechanical fields(Meloni et al. 2021).

When researching origami a common approach is to investigate crease

patterns (Figure 1) (Hull 2021). A crease pattern is a diagram representing

folds as lines on a plane (Eppstein 2018), distinct to the specific folded struc-

ture (Hull 2021) and can therefore be used as a folding guide (Lang 2011).

Each crease pattern is defined by its creases, vertices, and faces (Meloni et al.

2021). Faces are the blank areas surrounded by crease lines or the edge of

the sheet. Looking at Figure 1 one quickly notices that all crease lines are

Figure 1: Single-vertex flat foldable crease pattern

straight. This is because this Extended Essay will only consider axiomatic
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origami, origami designs with crease patterns following Huzita-Hatori axioms

(Ben-Ari 2022), also known as Basic Origami Operations (Hull 2021). This

constraint aligns with the research question’s focus on rigid, flat-foldable

origami, which are all axiomatic. The choice to limit the scope to axiomatic

designs is intentional, as they have a well-defined mathematical framework

based on Euclidean geometry. In contrast, non-axiomatic designs lack formal

geometric rules, therefore it would introduce complexities and ambiguities to

the research. Huzita-Hatori axioms are briefly presented in Figure 2, but

understanding them is not required for this essay. However, note that the

operations can only produce straight creases.

Figure 2: Brief presentation of Huzita-Hatori axioms (Meloni et al. 2021)

When drawing these straight lines it is common practice to identify the fold

type; whether it is a mountain or a valley fold. In this essay, red lines rep-
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resent mountain folds while blue lines represent valley folds. Both mountain

and valley folds are visualized in Figure 3 and defined in Definition 4 and 5.

Definition 4. Valley folds are folds with fold angle θ where 0 ă θ ď π

(Meloni et al. 2021)

Definition 5. Mountain folds are folds with fold angle θ where ´π ď θ ă 0

(ibid.)

Figure 3: Left: valley fold, Right: mountain fold, inspired by Hull (2021)

Further, the research question is restricted to flat-foldable origami, a sub-

section where all origami must fold flat (Hull 2021). For this, it must follow

Definition 6.

Definition 6. For a crease pattern to be flat-foldable each crease must have

a folding angle that converges to either π or ´π (ibid.).

One such example is the crease pattern in Figure 1. Whether the crease

pattern is flat-foldable can be tested experimentally by folding (Figure 4)

or checked theoretically using Maekawa’s theorem and Kawasaki’s theorem

(ibid.).
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Figure 4: Figure 1 crease pattern folded confirming its flat-foldability

Theorem 1 (Maekawa’s theorem). ”The difference between the number of

mountain (M) and valley (V ) creases in a flat vertex fold on a cone with

cone angle ď 2π is 2” (Expression 2) (Hull 2021).

|M ´ V | “ 2 (2)

Theorem 2 (Kawasaki’s theorem). ”Let G be a single-vertex crease pattern

on a cone with cone angle ď 2π and with consecutive angles between the

creases α0, ..., α2n´1. Then G is flat-foldable if and only if α0 ´α1 `α2 ´ ...´

α2n´1 “ 0” (ibid.).

The research question is limited to flat-foldable origami designs to re-

duce the ambiguity of ”unraveling”. According to Defintion 6 a flat-foldable

origami design when folded must have fold angles π or ´π, hence a flat-

foldable crease has only two states, folded (|θ| “ π) or unraveled (θ “ 0)

(Definition 7). This is useful when operationalizing the states of unravel-

ing: not unraveled (Definition 8), incompletely unraveled (Definition 9), and

completely unraveled (Definition 10).
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Definition 7. A flat-foldable crease is folded when its fold angle θ “ π or

´π and unraveled when its fold angle θ “ 0.

Definition 8. An origami structure is not unraveled when all n creases are

folded (Definition 7). Hence, a flat-foldable origami (Definition 6) is not

unraveled iff
řn

k“1 |θk| “ πn.

Definition 9. An origami structure is incompletely unraveled when p (0 ă

p ă n) creases are unraveled (Definition 7) and when n´p creases are folded

(Definition 7). Hence, a flat-foldable origami (Definition 6) is incompletely

unraveled iff 0 ă
řn

k“1 |θk| ă πn.

Definition 10. An origami structure is completely unraveled when all n

creases have unraveled (Definition 7). Hence, a flat-foldable origami (Defi-

nition 6) is completely unraveled iff
řn

k“1 |θk| “ 0.

According to Definition 7 and 10, when a crease unravels or when an en-

tire crease pattern unravels completely it should turn flat returning to the

condition before folding. However, when experimenting with paper the de-

formations’ of the creases are permanent preventing the paper from turning

completely flat. Hence, paper is not an ideal medium to simulate the math-

ematical ideal, limiting the validity of observations. Regardless it still serves

a valuable purpose in aiding the imagination of the ideal and the theoretical

analysis. Therefore experimentation will remain essential in the exploration

of the research question but the results must be critically evaluated.
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Finally, pulling is defined in Definition 11. With this all elements of the

research question is defined providing clear boundaries and a rigid framework

to start mathematical exploration.

Definition 11. Pull is defined to act from two non-overlapping points, P1, P2,

on the sheet (R2) (Expression 3) with vectors in opposing permanent direc-

tions.

P1 ‰ P2 ^ P1, P2 X R2
‰ ∅ (3)
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3 Investigating single-vertex origami

To solve the research question the simplest origami design had to be investi-

gated at first. The simplest origami designs are single-vertex designs, where

the crease pattern only has one vertex from which straight creases radiate to

the edge of the sheet (Figure 1) (Hull 2021). Since Figure 1 is a single-vertex

design, this section will use the crease pattern in Figure 1 to explain results

of the exploration.

Firstly, to systematically explore the effect of differing points of pull, the

pulling points were first restricted to be on the creases, which were numbered

in a clockwise manner (Figure 5). Allowing systematic experimentation of

unraveling when pulling from different combinations of points. Results for

Figure 1 are tabulated in Table 1. Here, the creases that unraveled when

pulling from C1 and a different crease are summarized, denoted using the

crease numbering in Figure 5. The pulling points’ (P1, P2) (Definition 11)

positions on the creases are not noted as they did not affect the unravelability.

Therefore, all the following visualizations of the pull are represented using

green arrows starting from the edge of the crease, allowing for a clearer

visualization (Figure 6). However, it should be mentioned that the position

affected the force required to unravel, but this is ignored as it is irrelevant to

answer the research question.

Based on the data collected (Table 1), when two neighboring creases are

pulled nothing unravels. Therefore, when Expression 4 is true, there is no
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Figure 5: Figure 1 with creases numbered in a clockwise order

Creases with point of pull Creases unraveled
C1, C2 none
C1, C3 C2

C1, C4 C2, C3

C1, C5 C2, C3, C4, C6, C7, C8

C1, C6 C7, C8

C1, C7 C8

C1, C8 none

Table 1: Tabulation of the position of points of pull and which creases un-
raveled.
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Figure 6: Visualization of pull

unraveling. Finding the criterion for no unraveling, answering a part of the

research question.

P1 PCx ^ P2 P tCx`1, Cx´1u, x P Z`, x ď n

if x “ n, Cx`1 “ C1, if x “ 1, Cx´1 “ Cn

(4)

3.1 Line of tension and crease unraveling

There is also a pattern for creases unraveled which is best understood by

drawing a straight line between the two pulling points (P1, P2) (Definition

11). From Table 1 it is evident that all the creases intersecting this line

(P1P2) unravel, except the two creases with the pull points (P1, P2). These

patterns were observed in all trials and are best explained by understanding

the line (P1P2) as a line of tension T . The interpretation of the line of

tension is justified by tension’s tendency to follow the shortest path between
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two points, when forces act in opposite directions (Definition 11), and by

Definition 3, prohibiting deformation of the sheet, satisfying the criteria for

tension formation.

To further understand this interpretation one should start by investigat-

ing an individual fold (Figure 7; red line). The effect of the line of tension

(T ) can be understood by treating T as two vectors (T⃗1, T⃗2) extending from

the intersection between T and the crease (Figure 7; black solid line). Each

of the two pulling vectors can be decomposed into a vector parallel (T⃗y) and

normal (T⃗x) to the crease (Figure 7; black dotted lines). The parallel vectors

Figure 7: Decomposition of vector T over a crease (red)

are ignored as they cannot change the system, as origami is defined on a

non-stretchable sheet (Definition 3). However, the normal vectors will un-

ravel the fold (Figure 8). Therefore, there are two conditions for a crease to

unravel developed into Theorem 3
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Figure 8: Unfolding of a 3-dimensional diagram of Figure 7

Theorem 3. Given a single-vertex rigid flat foldable origami, any crease Ck

unravels when the line of tension T intersects Ck at only one point.

Proof. Assume the contrary is true, that the crease Ck unravels when inter-

secting T at two or more points.

Since only axiomatic origmai are considered, the geometry must adhere to

Euclidean principles. In Euclidean geometry, when two straight lines inter-

sect at two or more points the two lines are coincident.

Tx can be rewritten in terms of T and α, where α is the angle between the

line of tension (T ) and the crease (Ck) (Expression 5) (Figure 7).

Tx “ T sinα (5)

When T and Ck are coincident α “ 0, hence, by solving Expression 5 for
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α “ 0 one can find the value of Tx.

Tx “ T sin 0

Tx “ 0

If Tx “ 0 there is no unraveling. Hence, it is proven that Ck does not unravel

when T intersects Ck at more than one point. QED

Whether a crease unravels can therefore be checked mathematically using

Expression 6, a mathematical formulation of Theorem 3. When Expression

6 is true the crease (Ck) unravels. GT is the gradient of T and GCk
is the

gradient of Ck, and are used to check whether T and Ck are coincident

(parallel). Therefore, this logic answers the research question for a singular

crease, but it must be extended to cover an entire design.

GT ‰ GCk
^ T X Ck ‰ ∅ (6)

An implication of the Theorem can be observed in Table 1. No combina-

tion of points of pull unravels all the creases. The one closest to completely

unraveling the structure is pulling (Definition 11) from C1 and C5 (Table

1). When unraveling it unravels into a two-faced structure (Figure 9), as

GT “ GC1 , GC5 (Expression 6). Table 1 suggests a single-vertex origami will

never completely unravel when points of pull lie on creases further detailed

in Theorem 4.
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Figure 9: Resulting two-faced structure after pulling from C1 and C5 (turned
horizontal)

Theorem 4. Given a single-vertex rigid flat foldable origami, no two points,

A,B, exist on creases, Ca, Cb (a, b P Z`, a ‰ b, a, b ď n), where two pulling

forces (Definition 11) can completely unravel the entire structure.

Proof. Assume the contrary is true, implying Expression 6 is true for pulling

points A,B.

For this, T must intersect all the creases (Expression 6), only possible at

the central vertex in a single-vertex-flat-foldable origami due to Kawasaki’s

theorem (Theorem 2). Therefore, the length of T must equal the added

distance between A and the center (O) (OA) and B and the center (OB)

(Expression 7).

T “ OA ` OB (7)

Expression 7 can be rewritten in terms of coordinates by setting O “ p0, 0q,

A “ pxa, yaq, and B “ pxb, ybq (Expression 8).

T “
a

x2
a ` y2a `

b

x2
b ` y2b (8)
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T can also be written using the cosine rule where φ is the intersection angle

between OA and OB(Expression 9).

T “

c

a

x2
a ` y2a

2
`

b

x2
b ` y2b

2

´ 2
a

x2
a ` y2a

b

x2
b ` y2b cosφ (9)

Combining both expressions gives Expression 10. Allowing one to find the

angle φ where the assumption is true.

a

x2
a ` y2a `

b

x2
b ` y2b

“

c

a

x2
a ` y2a

2
`

b

x2
b ` y2b

2

´ 2
a

x2
a ` y2a

b

x2
b ` y2b cosφ

(10)

ˆ

a

x2
a ` y2a `

b

x2
b ` y2b

˙2

“
a

x2
a ` y2a

2
`

b

x2
b ` y2b

2

´ 2
a

x2
a ` y2a

b

x2
b ` y2b cosφ

x2
a ` y2a ` x2

b ` y2b ` 2
a

x2
a ` y2a

b

x2
b ` y2b

“ x2
a ` y2a ` x2

b ` y2b ´ 2
a

x2
a ` y2a

b

x2
b ` y2b cosφ

2
a

x2
a ` y2a

b

x2
b ` y2b “ ´2

a

x2
a ` y2a

b

x2
b ` y2b cosφ

1 “ ´ cosφ

´1 “ cosφ

φ “ p2i ` 1qπ, i P Z

According to Maekawa’s theorem and Kawasaki’s theorem origami designs
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are only flat foldable if they are on a cone with a cone angle ď 2π.

Hence φ “ ´π, π.

However when φ “ ´π or π GCa, GCb “ GT , hence the design will not

unravel (Theorem 3 and Expression 6),

Therefore, the assumption is false and the theorem is proven by contradiction.

QED

However, this impossibility is avoided when the pulling points (Definition 11)

are not restricted to be points on crease lines (Figure 10). When Expression 6

Figure 10: Figure 1 crease pattern with T X C1Ñn and GT ‰ GC1Ñn

is true the crease always unravels. Therefore whether a single-vertex origami

design will unravel completely can be evaluated computationally using Ex-

pression 11, a loop checking whether Expression 6 is true for all creases from

C1 to Cn.

GT ‰ GC1Ñn ^ T X C1Ñn ‰ ∅ (11)

With this additional logic, the research question is completely answered
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for single-vertex designs. Firstly, if Expression 11 is true the design com-

pletely unravels. Secondly, if Expression 11 is false and Expression 4 is false

the design unravels incompletely. Thirdly, if T X C1Ñn ‰ ∅ is false or Ex-

pression 4 is true no unraveling.
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4 Investigating multi-vertex origami

When testing the evaluation logic developed for single-vertex origami on

multi-vertex origami the predictions are erroneous due to more complex un-

raveling motions and force distribution. Firstly, there are cases where the

unraveling motions require an intersection between faces. Secondly, some

designs have special force distributions, making creases unravel despite the

line of tension T not intersecting the crease. The following sections will

address these problems by exploring some specific multi-vertex origami de-

signs. Solving this is essential to answer the research question as it includes

single-vertex and multi-vertex origami.

4.1 Physical intersection of faces prohibiting unravel-

ing

One of the simplest multi-vertex origami is the hand fan, consisting of par-

allel creases with alternating mountain and valley assignment (Figure 11).

When pulling from two ends of the sheet, as shown in Figure 12, the struc-

ture unravels as predicted by Expression 11, as T (Figure 12; green line)

intersects all the creases at only one point each. However, when editing the

design to have two consecutive mountain folds (Figure 13), the design un-

ravels incompletely. This experimental result contradicts the logic developed

for single-vertex designs (Expression 11). The expression’s flaw is that it
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Figure 11: Origami hand fan crease pattern

Figure 12: Origami hand fan where T intersects all creases and the design
unravels

does not consider the fold type, whether mountain or valley. Therefore, this

must be altered to produce an algorithm that can reliably predict whether a
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multi-vertex origami design will unravel.

Figure 13: Origami hand fan with two consecutive mountain folds

To answer the research question the experimental results must first be

understood, hence two explanations were proposed. The first explanation

involves the formation of a curl (how the paper wraps around one of the

pulling points). For the sheet to continue unraveling its faces would need to

intersect and pass through one another, violating Definition 2. Although one

may argue that rigid sheets (Definition 3) prohibit curling, a flexible sheet

can be conceptualized as having infinite creases, allowing this theoretical in-

terpretation. The second explanation focuses on the face orientations (which

side is up), viewing folds as rotations around creases. If the pulling points are

on faces with opposite orientations, the sheet curls because the faces cannot

rotate due to the pull’s permanent direction (Definition 11). This curling
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phenomenon occurs not only with consecutive mountain folds but also with

consecutive valley folds.

To explore this phenomenon and potential explanations, mathematical

simplifications are made. First, the dimensions of both the crease pattern

and the folded structure are reduced (Expression 12 and 13), and the process

is visualized in Figure 14 and 15, an approach inspired by Talagrand (2024).

This is possible because the pulling vector only acts on the points of inter-

section between T and the creases. Hence the angle of intersection does not

matter and a 2D crease pattern can be reduced into a 1D diagram of crease

intersection points along T . By doing this diagrams become simpler and the

mathematics easier to develop.

R2
pcreasepatternq Ñ Rpcreasepatternq (12)

R3
pfoldingq Ñ R2

pfoldingq (13)

Figure 14: Visualization of Expression 12
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Figure 15: Visualization of Expression 13

Additionally, the experimentation method was simplified. Instead of having

two pulling points (Definition 11) one can have a fixed point, and a pulling

point, as this is equivalent to having two pulling points (Definition 11) when

ignoring magnitude. This is permitted because the research question is not

interested in the amount of force required to unravel, but rather in the ge-

ometric criteria for unraveling. Further, the simplification avoids accidental

changes in the direction of the pulling vector, which is against Definition 11.

Based on the reductions (Expression 12 and 13), the folding process can

be represented as done in Figure 16, where two valley creases produce three

faces named s1, s2, and s3. This is the simplest design with consecutive valley

folds.

As illustrated in Figure 16 there are only two ways for this crease pattern

to fold. Both combinations are better represented using matrices with one
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Figure 16: Folding sequence and possible folding orders of a two valley fold
hand fan design

column (Expression 14).
»

—

—

—

—

–

s3

s1

s2

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

s1

s3

s2

fi

ffi

ffi

ffi

ffi

fl

(14)

Figure 17: Folding sequence and possible folding orders of three valley fold
hand fan design

When testing the unravelability of these hand fan arrangements (Figure
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Figure 18: Folding sequence and possible folding orders of a four valley fold
hand fan design

16, 17 and 18) a few patterns emerge. To better understand them the folded

structure in Figure 17 and 18 are also represented as matrices in Expression

15 and 16.
»

—

—

—

—

—

—

—

–

s3

s1

s2

s4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

s2

s4

s3

s1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

s2

s1

s4

s3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(15)

»

—

—

—

—

—

—

—

—

—

—

–

s5

s3

s1

s2

s4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

–

s1

s3

s5

s4

s2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

–

s2

s1

s4

s5

s3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

–

s4

s5

s2

s1

s3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(16)

There are several patterns (Expression 14, 15, and 16), but most importantly
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no matrix has both the first face, s1, and the last face, sf pf “ n` 1), on the

ends (top and bottom) (Expression 14, 15 and 16). This allows for one simple

way to test whether a design will unravel completely by checking whether s1

and sf are each at the top and bottom of the matrix.

The inability of designs with only consecutive valley or mountain folds to

unravel completely is proven (Theorem 5), important to provide certainty to

the essay’s answer to the research question.

Theorem 5. No flat foldable rigid origami design with only m (m “ n)

consecutive valley or mountain folds (m ě 2,m P Z`) can unravel completely

when pulled from two points (Definition 11).

Theorem 5 can be reformulated into Lemma 1, which makes Theorem 5

easier to prove.

Lemma 1. A design with only m number of consecutive valley or mountain

folds cannot have s1 on the top of a final folded structure whilst having sf

(f ą 2, f P Z`) at the bottom (Expression 17).

»

—

—

—

—

—

—

—

—

—

—

–

s1

s2
...

sf´1

sf

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(17)
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Proof. Assume s1 is at the top and sf is at the bottom (Expression 17).

Then s2 must be below s1 and sf´1 must be above sf (Expression 17).

This identity of above and below relative to the face before can be represented

using a variable k (1 ď k ă f , k P Z`). Where fold s1 Ñ s2 can be

represented as fold k “ 1, fold s2 Ñ s3 as k “ 2, and fold sf´1 Ñ sf as

k “ f ´ 1. The results are tabulated in Table 2 showing a pattern between

the above/below identity relative to the face before and k. When k is odd

(k “ 2q ´ 1, q P Z`) s2q´1 Ñ s2q is below (s2q is below s2q´1) whilst when k

is even (k “ 2q) s2q Ñ s2q`1 is above (s2q`1 is above s2q).

Fold k value above/below identity relative to the face
s1 Ñ s2 k “ 1 below
s2 Ñ s3 k “ 2 above
s3 Ñ s4 k “ 3 below
s4 Ñ s5 k “ 4 above
s5 Ñ s6 k “ 5 below
s6 Ñ s7 k “ 6 above

Table 2: Table of the vertical position relationship between flap sections

If sf is at the bottom sf must be below sf´1, hence k “ f ´ 1 is below.

If f is the odd number 2q´1 the fold sf´1 Ñ sf can be rewritten as s2pq´1q Ñ

s2q´1 which is above (k “ 2q´2 “ 2pq´1q) is even. However, this contradicts

the assumption as sf cannot be above sf´1 whilst being at the bottom of the

folded structure.

Hence the assumption is false when f is odd.

When f is even, f “ 2q, f ´ 1 is odd, 2q ´ 1.

Hence sf´1 must be above sf´2 (k “ 2q ´ 2 “ 2pq ´ 1q).
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When sf´1 is above sf´2, sf must either be between sf´1 and sf´2, or above

sf´1, as the faces cannot intersect, pass through one another (Definition 2).

If sf is above sf´1 the assumption is false as both sf´1 and sf´2 are below

sf .

If sf is between sf´1 and sf´2 the assumption is false as sf´2 is below sf .

Hence the assumption is also proven false when f is even.

Therefore the assumption is proven false for both even and odd f values,

hence Theorem 5 is proven correct. QED

Further experimentation suggests that Theorem 5 also applies when the

creases are not parallel. This is expected theoretically as T only acts on single

points on the creases. Singular points can neither be parallel nor have an

angle relative to one another, therefore it does not matter whether the creases

are parallel or not. This is useful when answering the research question as

it allows Theorem 5 to be extended beyond designs with parallel creases.

On the other hand, experiments with designs with more than one group

of consecutive valley or mountain creases (Figure 19) give differing results

limiting Theorem 5 to one colony designs. A colony is a group of consecutive

valleys or mountain creases, for example, Figure 19 is a two-colony design.

However, to answer the research question the criteria for unraveling in multi-

colony designs are also uncovered.
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Figure 19: Multi colony origami

4.1.1 Multi colony designs

When attempting to explain the unraveling of a multi-colony design one

cannot use the approach used for Theorem 5, as s1 and sf can be on top, at

the bottom, in the middle, and on each end, because more freedom is granted.

Therefore the second interpretation presented at the start of Section 4.1 will

be used.

In this case, the difference in orientation between s1 and sf (whether the two

faces have the same side up) is important. Each valley fold rotates faces by π

radians (Definition 4 and 6), while every mountain fold can undo the rotation

as it rotates faces by ´π radians (Definition 5 and 6). Since T must intersect

all creases (Expression 11) one can use the difference in the total number of

mountain creases (M) and valley creases (V ) to find the total rotation (β)
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Figure 20: Example for Expression 18, 2 valleys and 3 mountains, hence
p2 ´ 3qπ “ ´π and unravels completely.

between s1 and sf (Expression 18) (Figure 20).

pV ´ Mqπ “ β (18)

Through experimentation, it is possible to find a pattern between β values

and complete unraveling (Table 3). Based on the results (Table 3), the

M value V value β value Completely unraveled
4 1 3π False
3 1 2π False
3 2 π True
3 3 0 True
2 3 ´π True
1 3 ´2π False
1 4 ´3π False

Table 3: Tabulation of β values and whether the design unraveled completely

structure completely unravels when β “ π, 0, or ´π (Table3). This can be
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explained using a single crease. When |β| ą π there is only one pulling

force (Figure 21; green arrow) acting on the crease, generating an equal and

opposite normal force in accordance with Newton’s third law (Figure 21;

orange arrow). In this case, the structure can only unravel by curving a face,

which is prohibited in rigid origami (Definition 3), hence the crease cannot

be unraveled. This conclusion is based on observations where faces curved

to allow unraveling.

Figure 21: Generation of a counteracting normal force

On the other hand when |β| “ π each pulling force unfolds less than π

radians, producing no opposing force of equal magnitude, hence unravels.

Figure 22: Simplified unfolding process when β “ |π|

Therefore, Expression 19 is one of the criteria for unraveling multi-vertex

designs. When both Expression 11 and 19 are true, multi-vertex designs
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unravel completely.

|V ´ M | ă 2 (19)

4.2 Force distribution

The second challenge is how multi-vertex origami distributes forces when

unraveling. Observations show that some creases where the line of tension

T does not intersect also unravel for some designs, like the Miura pattern

(Figure 23) (Misseroni et al. 2024; Meloni et al. 2021). Explaining this obser-

Figure 23: Unraveling of the Miura pattern

vation fully is challenging, however, the property, degree of freedom (DOF),

helps understand and predict some features. DOF is ”the number of indepen-

dent parameters or values required to specify the state of an object” (Baker

and Haynes 2024). In terms of origami, it implies the number of fold angles

that must be known to predict the fold angle of all other creases, and DOF

can be found using adjacency matrix (Yu, Guo, and Wang 2018). Based on

the definition of DOF, it was hypothesized that an origami structure would

completely unravel if the number of creases T intersecting in the completely

unraveled state is greater or equal to the DOF of the structure. This would

be true if creases were considered unraveled when |θ| ă π, as all fold angles
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must change when the number of creases intersecting T equals DOF , accord-

ing to the definition. However, creases are only considered unraveled when

θ “ 0, hence the situation is significantly more complex. This is supported

by observations where the origami unravels completely or incompletely. It

is thought to be predictable through the crease pattern force distribution,

however, no pattern was discovered in this research. Part of the difficulty

lies in the identification of complete and incompletely unraveling. Therefore,

to explore this in further detail, one should either use a more rigid material,

such as plastic, or take a more theoretical approach.

Because of this obstacle, the research question cannot be answered fully,

but the criteria found throughout the essay allow for an evaluation algorithm

to correctly evaluate all rigid flat foldable origami except multi-vertex designs

where the line of tension (T ) do not intersect all creases.
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5 Unravelability Evaluation Algorithm

To address the research question, an evaluation algorithm was developed,

represented as a flow chart (Figure 24) (inspired by Yu, Guo, and Wang

(2018)), and is named Unravelability Evaluation Algorithm. It integrates all

the methods developed in this essay into a logic chain, enabling the evaluation

of whether an origami design will unravel or not, and whether it will unravel

completely or incompletely. When the algorithm is given a crease pattern

and the two points of pull (P1, P2), which forms the line of tension (T “

P1P2). A computational variable x (x P t1, 2, ..., nu) cycles through integer

values, and n represents the total number of creases. For computational

simplicity, the following conventions are applied: C1 “ Cn`1 and C0 “ Cn.

Additionally, C1Ñn denotes the process of checking for all creases from C1

to Cn. The algorithm’s computational framework makes it easy to code

a computer program, increasing the practicality of this Extended Essay’s

answer to the research question.
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Is this rigid flat-foldable
origami design unravelable?

Input: Crease pattern and two points of pull (P1, P2)

Single-vertex GT ‰ GC1Ñn ^ T X C1Ñn ‰ ∅ Complete unraveling

P1 P Cx ^ P2 P tCx`1, Cx´1} Incomplete unraveling

No unraveling

GT ‰ GC1Ñn ^ T X C1Ñn ‰ ∅ |V ´ M | ă 2 Complete unraveling

Incomplete unraveling

P1 P Cx ^ P2 P tCx`1, Cx´1u No unraveling

Complete or incomplete unraveling

True True

False

False

True

False

True True

FalseFalse

True

False

Figure 24: Flow chart of Unravelability Evaluation Algorithm, inspired by
Yu, Guo, and Wang (2018)
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6 Conclusion

In this essay, the research question ”How to mathematically evaluate whether

a rigid flat-foldable origami design will unravel or not, and whether it will

unravel completely or incompletely when pulled from two points?” has been

explored. To answer this question, definitions and theoretical frameworks

were established, and origami structures of varying complexities were inves-

tigated. The resulting Unravelability Evaluation Algorithm (Figure 24) was

developed cumulatively through theorems developed in this essay, providing

accurate answers for single-vertex designs and multi-vertex designs where Ex-

pression 11 is true. Thereby reducing the need for costly and time-consuming

physical tests, providing a robust tool for applying origami mechanics. De-

spite the algorithm’s strengths allowing the Extended Essay to answer the

research question to a high degree, the algorithm has limitations. Specifically,

it cannot predict unraveling force distributions in complex multi-vertex de-

signs, restricting the essay’s ability to answer the research question. This

highlights the need for future research to address this gap and extend the

algorithm’s capabilities. Additionally, expanding the research to include non-

flat foldable origami would broaden the algorithm’s applicability and enhance

its relevance in the field. By addressing these limitations and extending the

scope, the potential of origami mechanics can be fully realized opening doors

to advancements in a wide range of fields such as nano-robotics, material

science, and aerospace.
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